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Abstract

We deal with a generalization of Braitenberg (called topos)
vehicles in a Evolutionary Robotics framework, to obtain a
control system of a robot that can discriminate and reach the
position of one of the complex sound sources, learned in a
phylogenetic learning scheme.
Application TOPOS is a computational model for evolving
populations of Khepera-like simulated robots whose control
systems are weakly inter-connected symmetric spiking neural
networks.
We take a strong biological referent, modeling the structures
that perform the auditive processing of sound like the cochlea,
through the Fourier Transform representation of complex sig-
nals. TOPOS robots are tested for recognizing and choosing
one of two complex waves in an evolving population. In
spite of the well-known difficulty of this problem, we found
that Braitenberg vehicles that use spiking neural networks are
very robust, obtaining high scores of success.
This work is an approach mainly but not only from the tech-
nical point of view to the problem of recognition of complex
time signals in a navigation and embodied structure.
Further extensions of this work are proposed for discussion,
as well as a deep analysis of the theoretical side.

Introduction: Braitenberg Vehicles and
Evolutionary Robotics

Braitenberg vehicles (Braitenberg, 1984) are thought exper-
iments based on tropism and taxis: the movements of plants
and animals toward or away from a stimulus. The more in-
teresting Braitenberg vehicles are symmetric devices com-
posed of two frontal sensorial inputs together with a free
wheel and two back wheels impelled by motors. The vehi-
cle is governed by a circuit that makes a crossed connection
from the left sensor to the right motor and from the right sen-
sor to the left motor. If the left sensor is fired, the right motor
speeds up and the vehicle runs turning to the left; when the
left sensor receives the signal, the vehicle advances turning
to the right, until the vehicle reaches the source of the stim-
ulus.

In Artificial Life and Evolutionary Robotics (ER) (Beer
and Gallagher, 1992) (Cliff et al., 1993) (Floreano and Mon-
dada, 1994) (Floreano and Urzelai, 2000) (Harvey, 1995)

(Harvey et al., 2005), the embodiment of Braitenberg vehi-
cles in handcraft small robots or Khepera robots that move
toward a white light source is very popular (Mobus, 1994)
(Salomon, 1997), following the Braitenberg experiment.
There are works dealing with sounds instead of white light,
as cricket phonotaxis (Lund et al., 1997). This sound is a
simulated male cricket song, formed by two chirps per sec-
ond, where each chirp is four cycles of 25Hz square wave
amplitude modulation of a 4.8kHz tone (Horchler et al.,
2003).

The application presented in this paper receives the name
of TOPOS (gr. place) in reference to navigation problem
(Floreano and Mondada, 1996) based in recognition of com-
plex signals. This is a way to represent a non structured envi-
ronment, since the final objective of Autonomous Robotics
(Brooks, 1991b) (Brooks, 1991a) (ER included) is to obtain
systems robust enough to behave well in hard environmental
conditions. Previous works only use simple constant signals
as stimulus, and other references (Floreano and Mattiussi,
2001) put emphasis in the great difficulty of recognizing
complex signals that vary in time.

The Dynamical Systems approach is also getting stronger
in the world of ER (Beer, 1994) (Harvey et al., 2005). In
TOPOS the motors-to-sensors external feedback is essential
for the task of navigation, like the head movements we make
to find the source of a sound. The time is processed in axon
delays among neurons in a internal dynamical system, cou-
pled with the outside through sensors and motors.

Generalizing Braitenberg vehicles to recognize
the sounds of nature

The aim of this work is to enrich the simple structure of
Braitenberg vehicles by increasing their perceptive capabil-
ities to recognize and select between two sources of com-
plex sound, like recorded ones. To have an idea of the hard-
ness of the problem we face, think in a Braitenberg vehicle
that recognizes ”disco-flashing lights”, when it perceives the
dynamic pattern of some seconds of duration of two RGB-
color-composed light sources.

The approach used to study the ability to recognize and



reach sounds resembles a Skinner box (Skinner, 1938). It
is commonly used with pigeons and rats that get food or an
electrical discharge whether they do a task.

The phonotaxis behavior has been studied in ER
(Di Paolo, 2003) (Scutt, 1994). As a example, in (Lund
et al., 1997) a Khepera resembles a female cricket. This
approach tries to build a close simulation of the cricket mor-
phology and physics, including neural design that comes
from the real nervous system of crickets, and can only recog-
nize a concrete structure of chirps (two chirps per second,
where each chirp is four cycles of 25Hz square wave ampli-
tude modulation of a 4.8kHz tone).

Handcraft design is almost impossible (Salomon, 1997),
so evolution is needed to obtain a whole controller from sen-
sor to actuators (Chiel and Beer, 1997) (Tuci et al., 2002).

The agent is situated and embodied, its sensors have a
shape that modifies the amplitude of the signal that passes
to the neural network, and the place in the arena determines
the intensity of sound (Chiel and Beer, 1997).

The agents also perform another modification of the
sound that they receive to model the auditory system of
mammals, as explained in next section.

Fourier analysis and frequency spectrum
Mammals process sound signals by means of the auditory
system in conjunction with the nervous system (Handel,
1989) (Moore, 1997).

Mammalian auditory system has three parts that trans-
form sound waves into input signals for nervous system. The
external ear localizes the sound sources and funnels waves
into auditory channel causing the vibration of the tympanic
membrane. The middle ear transfers that movement of the
membrane through a chain of bones (malleus, incus, and
stapes) to the oval window of cochlea determining the dy-
namic range of the sound. Finally, oval window causes
movement of fluid in cochlea, ultimately resulting in stim-
ulation of cochlear hair cells which excite neurons of spi-
ral ganglion, that send spike coded auditory signals to brain
through cochlear nerve.

If we simplify non-linear effects, we can say that the
cochlea performs a Fourier transform of sound waves, and
this is the input received by the nervous system (Handel,
1989). The Fourier Transform takes as input a wave over
time (e.g. a sound sample) and produces the vector of com-
plex numbers representing the amplitude and phase of each
interval of frequency (the spectrum). In sound-processing
computer programs we can see sound in this type of repre-
sentation (figure 1).

Sound and sensors in the model
In order to save computational resources we only use the am-
plitude data previously produced applying the Fourier Trans-
form.

Figure 1: The frequency spectrum of a bird chirp. The
second experiment prepared to test TOPOS system uses the
chirps in the left (first 0.15 seconds) in a sound source and
the others in the other source. Time in seconds (horiz), fre-
quency in Hz (vert), and highest amplitudes in yellow.

The signal is a vector of real numbers presented to sen-
sors every time step of 0.04 seconds using 64 strips in the
range of frequency and 6000Hz as sampling frequency. To
make a comparison, 0.1 seconds is the time necessary for hu-
man auditory system to differentiate two sound signals (echo
threshold).

The sound signal is propagated from the sound sources
with an intensity that is inversely proportional to the square
of distance.

Each sensor reads information from a strip of the range
of frequencies (characteristic frequency, CF) and takes the
values from adjacent strips with less weight. The sensors
also take into account of threshold and saturation level, and
add some noise to signals, to provide flexibility to the system
as says (Jakobi, 1998). The sensors are more sensitive to
signals in the CF, but not only, so that they can react with
close frequencies, depending on the genetic design. There
are ”wide” and ”narrow” sensors, whether they have a high
value in this parameter. In figure 2 we can see real data,
and the neuron reacts when frequency and amplitude draw a
point in the area of the solid line.

Each strip has a range of 47 Hz, so a deep bass sound is
represented in the first strip. This sound will excite a sensor
whose central frequency is the second strip, but with less
intensity.



Figure 2: The activation threshold for each frequency, mea-
sured with electrodes implanted in starlings. Figure and cap-
tion taken from (Nieder and Klump, 1999)

TOPOS System
TOPOS application has been implemented in java; it
evolves populations of generalized Braitenberg vehicles.

The use of a realistic biological referent for audition (de-
scribed previously in Fourier Transform) is fundamental; but
TOPOS is a model, that is, it doesn’t reflect precisely the dy-
namics or shape of a concrete robot. Though, the experi-
ment can easily be transformed to a simulation, since strong
restrictions aren’t imposed.

General description
TOPOS arena implements the physics of sound transmission
and perception. The sound pressure (power) decreases with
distance (as said in previous section). There is no echo nor
sound reflection. The user puts two sound sources into the
world selecting for each one if it is the goal or the miss.
Braitenberg vehicles evolve to recognize and reach one of
them (the goal), starting from a point at the same distance
from both sources, and faced to them with a small amount
of randomness in the starting angle (up to 30o to the left or
to the right).

TOPOS makes a generalization of the structure of Brait-
enberg vehicles: a neuronal network composed of two sym-
metrical sub-nets, shown in window figure 4. Each sub-
network has 8 internal neurons and some connections to the
motors. Subnets are partially superposed and share 4 neu-
rons, to ”pretend” the brain structure. Each sub-net is a fully
connected spiking neural network(see next subsection).

Ears are composed of six sensors, each one connected to
one of the input neurons as a special input. This neuron can
be one of its side or of the opposite.

The physics of a real microphone is included in the model

Figure 3: Process of hearing.

Figure 4: The internal structure of an evolved topo is shown.
Connections to motors in red, axons in orange (+) and dark
blue (-), and connections from sensors in cyan and ma-
genta. Signs in brackets mean colors for positive and nega-
tive weights.

applying a cardioid-shape function to the received signal as a
way to represent the pinna (external ear). The sound is atten-
uated multiplying the amplitude of every frequency (in the
simplest scheme) proportionally to the hearing angle (mul-
tiplied by 0.0 if sound comes from the back, and by 1.0 if
from the front). The emulation of a microphone will allow
us the easy embodiment in a real robot.

A topo moves using two motors and wheels. Its difference
of velocity produces rotation, the same mechanism used in
Khepera-like robots and emulators. Motor neurons feed mo-



tors in a integration fashion, calculating the mean of time
passed since motor neurons sent spike to motors. The lower
the mean, the faster the wheel.

The spiking neural network
Beer’s and others’ work in ER (Beer and Gallagher, 1992)
(Cliff et al., 1993) (Harvey, 1995) (Harvey et al., 2005) use
Continuous Time Recurrent Neural Networks (CTRNN).
We also use a recurrent model but with a spiking-type of
neurons that can code the information in pulse trains and
time delays and has a fixed strength spike when the poten-
tial of the neuron overflows the threshold.

TOPOS’ neural network type has been used only recently
in ER (Di Paolo, 2003) (Floreano and Mattiussi, 2001)
(Maass, 1997), though it has been used in other works
with the name Pulsed Neural Networks (Maass and Bishop,
1999).

Rich variety of behavior is shown (chaotic dynamics in-
cluded) in (Beer, 1995). In Di Paolo’s work: ”Spiking
neural networks possess a number of attractive features.”
(Di Paolo, 2003) The most important characteristics are that
these networks are biologically plausible (Floreano et al.,
2005), that they can integrate perceptions over time before
actions (Yamauchi and Beer, 1994), that can process time
information (delay among stimuli) and that are mathemat-
ically equivalent to sigmoid networks, stronger to noise,
and sometimes requiring significantly fewer neurons and
(Maass, 1997).

Spikes travel through axons with a speed and time delay
till they reach the weighted synapses. Inhibitory synapses
can block the receptor’s spike.

Evolution
TOPOS has the structure of a typical ER system:

Genome: described by a vector of float numbers that de-
termine the values of sensors, neurons, delays in axons,
synapse weights, and speed of motors. Each hemisphere
is a set of 8 fully interconnected neurons, and the two
hemispheres share 4 neurons.

Morphogenesis: the translation of genome to a sub-
network is a direct one, but this information is mirrored to
represent bilateral symmetry (Gallagher and Beer, 1999),
connecting a low number of neurons between the two sub-
networks in the same fashion as in mammals’ brain.

Boolean values are represented by a real number, and
when they reach a certain threshold get true value.

Fitness: each topo in the world is tested in five equivalent
trials. A trial consists in performing a navigation task
during a given time following the sound sources as land-
marks.

The starting position of a topo in each trial is equidistant
of the two sources (10.5 units of distance). The sources

are randomly placed each trial, in the right or left side of
the starting position.

Score (fitness F) is the sum of the scores from each trial.
Trial score is calculated from minimal and last distance
in the trial, and cannot be a negative value. A bonus (+10)
is added when a topo reaches a circle around the correct
source of a given ratio (goal), while a penalty of 10 points
is applied if the topo reaches the incorrect source (miss)
when crossing its frointer. This limits are at 5.25 units,
the distance between sources divided by 4.

Trialscore = 10−mind− lastd +bonus− penalty

The more score, the better the vehicle has performed. If
the vehicle gets a penalty its score would be negative. If
we assign a 0 this trial and if it performs well in the other
trials, the penalty will not affect global fitness.

If a vehicle goes in the wrong direction, its minimal dis-
tance is that of starting place, more than fixed value 10, so
trial score will also be 0.

If a topo reaches the correct source (the limit is at 5.25 u),
score is 10−5.25−5.25+10−0 = 9.5

Fitness is an absolute value, not depending on environ-
ment or other topos’ behavior. Red queen effect cannot
appear with this kind of experiments.

Genetic algorithm and selection: an élite of the topos
with more score in the test are selected for survival to next
generation (25%) and the other places (75%) in the fixed
size population are filled with crossover of two parents
(two cutting points). Parents are chosen from all the past
population (élite included) with a uniform probability.

When copying in crossover, all the genetic numbers (with
a 5% of probability) are modified from 1 to 25% of its
value.

Experimental results
Each experiment has these numbers: the population is of
100 topos, each topo is tested 5 times, with a duration of 20
seconds maximum each trial. If an individual does a goal or
a miss, the trial is over. Last generation (200) is a special
round of 100 trials to test the élite to obtain accurate data for
the statistical analysis of the individuals with the best score
of the run.

Instead of fitness, we use these two variables to measure
the ability to distinguish the two sources:

• relative effectiveness efr = goals/(goals+misses)

• absolute effectiveness efa = goals/trials

Two slightly different passages in the beginning of Metal-
lica’s ”Nothing else Matters” have been chosen. They have
no voice, and are similar in music and length. Both sound



simultaneously, and the vehicle has to move to face one and
tell if it is the correct or has to spin to the other one, while it
hears both sounds.

The figures 5 and 6 show the high scores in the task.

Figure 5: Histogram of Relative effectiveness (frequency in
the x-axis vs number of individuals with that EFR in the y-
axis).

Figure 6: Histogram of Absolute effectiveness (frequency in
the x-axis vs number of individuals in the y-axis).

To compare, we can use these results (see figures 7 and
8) from a test experiment that has the same sound in both
sources. Solution is to goal or fail, but there is no informa-
tion to choose, so is 50% of effectiveness.

For a second test, we have prepared two sets of bird chirps
(say A and B sounds), that are parts of a song from one bird,
from the same recording. Sound A has a chain of chirps like
the ones in the first 0.15 seconds of the figure 1, and B like

Figure 7: Test experiment: EFR.

Figure 8: Test experiment: EFA.

the ones in the end of the figure.
Sound A has half a second of chirps and half a second

of silence. Sound B has first silence and then the sound,
so agents can hear each sound separately. Sounds continue
at the point last trial ended, to avoid vehicles use a short-
cut. For a new topo the sound begins at a random point, and
comes from the correct or from the wrong source.

We name experiments AB, BA and AA, being the first letter
the sound that rewards and second the miss. Double AA
means that we have the same sound in both sources, and
topos cannot choose the right one. See table 1.

Exp EFR x EFR σ EFA x EFA σ

AB 99.1 1.76 90.5 4.21
BA 100 0 97.8 2.33
AA 34.8 37.6 2.6 2.86

Table 1: Mean x and standard deviation σ of EFR and EFA
data. Each line has one experiment.



Discussion and Future Work
First, we can say that ”it works”. To our knowledge, there
isn’t any work that performs such a complex task of recog-
nition of a wide and general type of signals using this frame-
work of Evolutionary Robotics.

We have tried with hand-made sounds, like white noise
with different band-pass filters creating two rhythms, but it
seems that artificial sounds are too difficult, and that it is eas-
ier to get and recognize the characteristics of natural sounds.

Yet, we can think that the choice of a pair of sounds could
have the trick, like the presence of a strong frequency in only
one of the sounds. Nevertheless, the preliminary results of
an ongoing experiment show that the a sound in a source and
just the same sound with a different order in its parts (a sim-
ple ”cut and paste” modification) can be differentiated, so
whether the sound has strong parts should not be a advan-
tage.

We have said that ”it works”, but we need to study why
it does. It is a difficult task like the ones done by neurobi-
ologists do with C. elegans and Aplysia, animals that have
the same role than Drosophila for Genetics. We yet have to
do the hard work of isolating the behavior of each sensor,
neuron and even axon, because the delay thas causes can be
the clue to recognition, or maybe dynamical systems are the
way to understand how the vehicle works.

We have two different ways of developing this framework.
First, on the technical side, we can say that this structure
seems powerful enough to achieve more complex problems
in navigation through landmark recognition. Nevertheless,
there remain some weaknesses like the absence of morpho-
genesis when we evolve neural networks. Another problem
is the huge amount of computational resources of this kind
of models (about an hour per generation in a PC).

Ontogenetical learning and applying the Hebbian rule
(Hebb, 1949) is another development that must be faced to
improve results and to open to problems other than Skinner-
box ones.

The ability of the topos to emit sounds could open a
way to communication in a ecosystem scheme like Artificial
Worlds (Polyworld is a very interesting example (Yaeger,
1994)), instead of independent trials in a traditional genetic
algorithm.
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