
rss feedarticle pagesarticle list

> jbohren.com < home articles tutorials projects photo

10 Feb 2014 by Jonathan Bohren <me at jbohren.com>

ROS C++ Hello World (The Simplest ROS Tutorial)
ros tutorial c++

Introduction
There are a lot of ROS tutorials out there. This is the simplest one.

This tutorial demonstrates how to build a ROS “Hello World” executable written in C++ without getting into the
details of ROS packages, workspaces, launchfiles, or other best practices. This tutorial is meant to
demonstrate the bare minimum of what is required to interact with a ROS system. It is not meant to be an
example of good ROS development practices, but rather is meant to be useful for someone new to ROS and
software development in general.

Unlike most tutorials, this tutorial intends to teach you about ROS instead of just getting you to run some
pre-defined programs. As such, very little will be explained preemptively to avoid errors. This is because you
will always encounter errors. Not just when using ROS, but with any system. Instead, this tutorial welcomes
errors because they present opportunities to explain how to recover from errors.

NOTE: This tutorial was written for the ROS Hydro Distribution. Assuming the commands are
still accurate, if you wish to follow this tutorial with a different distribution of ROS, any time
hydro is mentioned, simply replace it with the shortname for that distribution.

Pre-Requisites

A computer running a recent Ubuntu Linix LTS (long-term support) installation
Minimal experience with the Linux and the command-line interface
Minimal experience with C++

Tools Used

Ubuntu Linux
The bash shell
C++
The GNU Compiler Collection (GCC)
Any plain-text editor (I like vim).

ROS Packages Used

roscpp
rosconsole

Number of Windows Needed

Browser for these instructions
Window for your text editor
Terminal to run roscore

Terminal to run hello_world_node

Terminal to run introspection commands like rosnode and rostopic

Contents

1

1
2

3
4

5

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

1 de 7 15/05/15 18:59

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -cs) main" > /etc/apt/sources.list.d/ros-

wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

sudo apt-get update

sudo apt-get install ros-hydro-ros-base

mkdir hello_world_tutorial
cd hello_world_tutorial

Introduction
Pre-Requisites
Tools Used
ROS Packages Used
Number of Windows Needed

Installing ROS (if it hasn’t already been installed)
Add the ROS Binary Package Repository
Install the Base ROS Packages

Create THE SIMPLEST ROS (C++) PROGRAM
Compile the simplest ROS (C++) program
Run the simplest ROS (C++) program (and fail)

ERROR: ROS_MASTER_URI is not defined (Bad Environment)
ERROR: Failed to contact master (Good Environment, but no ROS Master)
ERROR: command not found: roscore (Fool Me Twice…)

Run the simplest ROS (C++) program (and succeed)
Inspecting the simplest ROS (C++) program
Distributed Logging with rosconsole
Play Around
Conclusion

Installing ROS (if it hasn’t already been installed)
For Ubuntu Linux, you can follow the following instructions, for other Linux platforms, see the main ROS
installation instructions. As of the writing of this tutorial, ROS packages are only built with the Debian package
management system . This makes it easy to install on debian-based Linux distributions like Ubuntu.

Add the ROS Binary Package Repository

First, add the binary package repository hosted on ros.org to your sysmtem. This will allow you to locate
pre-compiled ROS packages, and only needs to be done once, but is idempotent:

Next, get the ros.org PGP public key. This also only needs to be done once and is also idempotent.This will
let you verify that your ROS packages are actually coming from ros.org and not some malicious middle-man.
This is done automatically whenever you install a package from ros.org.

Install the Base ROS Packages

First, update the binary package index. This should be done whenever you want to make sure your system
knows about the latest versions of binary packages available:

Finally, install the base ROS packages from the ROS “Hydromedusa” distribution:

There are lots of other ROS packages available to install, but for this tutorial you only need a few of the “core”
packages. To see the list of currently available binary packags, their versions, and build status, you can see
the ROS debian package build status page.

Create THE SIMPLEST ROS (C++) PROGRAM
After you’ve installed the pre-requisites listed above, you can create a new directory for this tutorial. You can
call this directory anything you want, but in this case, we’ll call it hello_world_tutorial and make it
anywhere. Then, enter the directory:

6

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

2 de 7 15/05/15 18:59

// Include the ROS C++ APIs
#include <ros/ros.h>

// Standard C++ entry point
int main(int argc, char** argv) {
// Announce this program to the ROS master as a "node" called "hello_world_node"
ros::init(argc, argv, "hello_world_node");
// Start the node resource managers (communication, time, etc)
ros::start();
// Broadcast a simple log message
ROS_INFO_STREAM("Hello, world!");
// Process ROS callbacks until receiving a SIGINT (ctrl-c)
ros::spin();
// Stop the node's resources
ros::shutdown();
// Exit tranquilly
return 0;

}

g++ hello_world_node.cpp -o hello_world_node -I/opt/ros/hydro/include -L/opt/ros/hydro/lib -Wl,-rpath,/opt/ros/h

./hello_world_node

[FATAL] [1392021564.231775029]: ROS_MASTER_URI is not defined in the
environment. Either type the following or (preferrably) add this to your
~/.bashrc file in order set up your local machine as a ROS master:

export ROS_MASTER_URI=http://localhost:11311

The first step is writing the simplest C++ program that can interact with ROS in a meaningful way. All it does
is announce itself to the ROS Master as a ROS node called hello_world_node , then broadcast a
Hello-world message over the standard /rosout topic, and then wait for a SIGINT or ctrl-c .

This program will be built from single file named hello_world_node.cpp with the following contents:

hello_world_node.cpp

Compile the simplest ROS (C++) program
Since we’re building a program with C++, we need to compile it into an executable that we can actually run. In
this very simple case, this can be done by invoking g++ directly with the following build command (make
sure to get all of it):

If you are unfamilar with command-line usage of g++, the arguments passed to g++ have the following
meanings:

hello_world_node.cpp The source file(s) to compile
-o hello_world_node The name of the output file (the executable, in this case)
-I/opt/ros/hydro/include An instruction to look for C++ header files in /opt/ros/hydro/include

-L/opt/ros/hydro/lib An instruction to look for static libraries in /opt/ros/hydro/lib

-Wl,-rpath,/opt/ros/hydro/lib An instruction to look for shared libraries in /opt/ros/hydro/lib

-lroscpp Link against the library libroscpp.so (ROS C++ bindings)
-lrosconsole Link against the library librosconsole.so (ROS distributed logging)
-lrostime Link against the library librostime.so (ROS time measurement)

Run the simplest ROS (C++) program (and fail)
After successfully compiling the program, you can run it right away.

If you’ve been following this tutorial verbatim, then you’ll get an error message of some sort. While you might
only get one of these errors, you should read through all of them because it will help you recognize common
problems in the future.

ERROR: ROS_MASTER_URI is not defined (Bad Environment)

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

3 de 7 15/05/15 18:59

then, type 'roscore' in another shell to actually launch the master program.

source /opt/ros/hydro/setup.sh

./hello_world_node

[ERROR] [1392014787.460431497]: [registerPublisher] Failed to contact master at [localhost:11311]. Retrying...

roscore

This error means that you haven’t sourced one of the ROS setup files, but this is a common mistake among
novices. Specifically, you’re missing the $ROS_MASTER_URI environment variable, which is set by one of
these setup files.

Running ROS programs requires them to agree on a few specific things. One of these things is on which
machine and which port the ROS Master is running. The ROS master is what enables ROS nodes to find
each-other and communicate. As such, any ROS nodes which are meant to talk to each-other need to
announce themselves to the same ROS master.

As the helpful error message describes, declaring with which ROS master any ROS programs you run should
talk is done by exporting the ROS_MASTER_URI environment variable. The suggestion given by the error
message also happens to be the default if you properly source the ROS setup files.

Instead of doing what the error message tells you (why should you do what an error message says?), you
can source one of the standard ROS setup files to add ROS_MASTER_URI and other important variables to
your currently running shell:

If you want this to be available in each new shell you create, you should add the above line to the bottom of
your shell’s runcom file like .bashrc if you’re using bash . The .bashrc file is located in your home
directory and is executed each time you open a new shell.

At this point, you can try running hello_world_node again:

ERROR: Failed to contact master (Good Environment, but no ROS Master)

This error is reported if you’ve properly set up your ROS environment variables but you haven’t run roscore.
The roscore serves a few functions including running the ROS Master which, as was explained above, is
what enables ROS nodes to find each-other and communicate. In this case, hello_world_node is looking
for a ROS Master on the local machine, localhost , and on the default port, 11311 , and no ROS Master
is replying.

This is an easily solved problem. All that you need to do, is open a new shell with the appropriate
environment, and run roscore .

ERROR: command not found: roscore (Fool Me Twice…)

If you open a new shell and get an error like command not found: roscore , this is because you haven’t
sourced the ROS setup files in the new shell, as is described in the previous section. In addition to setting
ROS_MASTER_URI and other ROS_* environment variables, the ROS setup files also extend some standard

UNIX environment variables such as PATH and PYTHONPATH .

Unlike most programs installed to your system (which are put in /usr/bin or similar), ROS binaries are
installed to /opt/ros/$ROS_DISTRO/bin . This allows installation of more than one ROS distribution on a
single machine without causing conflicts.

As you might imagine, roscore is normally installed to /opt/ros/$ROS_DISTRO/bin/roscore , and when
you source /opt/ros/hydro/setup.sh , it adds /opt/ros/hydro/bin to your $PATH environment
variable.

Once your roscore is running, proceed to the next step.

Run the simplest ROS (C++) program (and succeed)
In the original shell in which you were trying to run hello_world_node , try running it again, now that the

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

4 de 7 15/05/15 18:59

./hello_world_node

[INFO] [1392020655.967763511]: Hello, World!

rosnode info /hello_world_node

Node [/hello_world_node]
Publications:
 * /rosout [rosgraph_msgs/Log]

Subscriptions: None

Services:
 * /hello_world_node/set_logger_level
 * /hello_world_node/get_loggers

contacting node http://localhost:55332/ ...
Pid: 22598
Connections:
 * topic: /rosout
 * to: /rosout
 * direction: outbound
 * transport: TCPROS

Node [/hello_world_node]
Publications: None

Subscriptions: None

Services: None

cannot contact [/hello_world_node]: unknown node

rostopic echo /rosout

roscore is running in the other window:

If everything goes well, you should see this hopeful message:

Leave the node running, and proceed to the next step.

Inspecting the simplest ROS (C++) program
In a new shell with a proper environment, you can now inspect your node running in the first shell with
standard ROS command-line tools.

One of the simplest, rosnode , is a command-line program for listing and querying information about ROS
nodes. For example, the info subcommand will give you all the metadata ROS knows about a given node.
You can get the info for hello_world_node like so:

This will give you information similar to the following:

Note that if you ctrl-c hello_world_node in the other window, and try to re-run this command, you will
see something similar to the following:

Distributed Logging with rosconsole
Simple as it may be, hello_world_node is actually doing much more than announcing itself to the ROS
master and then outputting “Hello, world!” to the command-line. This is actually being broadcast to any other
ROS nodes which have subscribed to the standard ROS log message topic called /rosout .

To see this, first make sure hello_world_node is still running. Then, run the following rostopic

command in another window to display any messages on the /rosout topic:

7

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

5 de 7 15/05/15 18:59

header:
 seq: 0
 stamp:
 secs: 1392025231
 nsecs: 354360393
 frame_id: ''
level: 2
name: /hello_world_node
msg: Hello, world!
file: hello_world_node.cpp
function: main
line: 11
topics: ['/rosout']

rostopic --help
rostopic echo --help

1
2
3
4
5
6
7

In the window running rostopic , you should now see the content of a single rosgraph_msgs/Log

message beneath the rostopic command, with content similar to the following:

This is the ROS message generated by the ROS_INFO_STREAM(...) command in hello_world_node.cpp !
You’ve just transmitted your first ROS message from a publisher (hello_world_node) to a subscriber
(rostopic).

You’ll notice that this message contains far more than just the string passed to ROS_INFO_STREAM(...) , it
also contains metadata about on which line and in which function the message was generated. This can be
very useful both when debugging your own code, or when inspecting errors in code written by others.

What might be surpsrising is that the rostopic echo command received the log message long after it was
sent. This might prompt questions about where this message was stored between the time
ROS_INFO_STREAM() was called and when rostopic echo was started. The answer is that ROS topic

publishers can optionally buffer the last message and send it out to any new subscribers once they establish
the connection.

If you tried running these two programs in reverse (first rostopic echo and then hello_world_node),
there’s a chance that the “Hello, world!” message gets sent before rostopic echo has enough time to
establish a connection to hello_world_node . This isn’t a bug or problem with ROS, however, since ROS
topics use a publish/subscribe communication pattern , and such patterns aren’t meant to be used for
synchronous communcation.

Play Around
Now that you’ve been given some tools, play around with different messages and the rosnode and
rostopic tools. Note that both of these tools have built-in documentation that you can read by passing the
--help argument in the following way:

Conclusion
This tutorial has hopefully introduced you to some of the core ROS concepts like the ROS master, ROS
nodes, and distributed logging with rosconsole and the /rosout topic. Additionally, it has hopefully
introduced you to how ROS libraries are installed on a Linux system, which environment variables are
needed to use those libraries, and how to set those environment variables with the provided ROS setup files.

references

The Ubuntu Linux Distribution ↩ ↩

The Bourne Again Shell ↩
The C++ Programming Language ↩

The GNU Compiler Collection ↩

The VIM Text Editor ↩
The Debian Package Management System ↩

ROS Topics ↩

8

2

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

6 de 7 15/05/15 18:59

8 Publish-Subscribe Pattern ↩

Except where otherwise noted, content on this site is licensed under a
Creative Commons Attribution-ShareAlike 3.0 License.

Privacy Policy

ROS C++ Hello World (The Simplest ROS Tutorial) http://jbohren.com/articles/roscpp-hello-world/

7 de 7 15/05/15 18:59

