
(/USERS/CSCHRODER) NOVEMBER 6, 2014

Advertisement

Intro to Systemd Runlevels and Service

Management Commands

In olden times we had static runlevels. systemd has mechanisms for more �exible and dynamic control of

your system.

News for the Open Source Professional

LOGIN / CREATE ACCOUNT

BROUGHT TO
YOU BY

CARLA SCHRODER (/USERS/CSCHRODER) |

Intro to Systemd Runlevels and Service Managem... https://www.linux.com/learn/intro-systemd-runleve...

1 de 4 25/05/16 16:26

Before we get into learning more useful systemd commands, let's take a little trip down memory lane.

There is this weird dichotomy in Linux-land, where Linux and FOSS are always pushing ahead and

progressing, and people are always complaining about it. Which is why I am taking all of this

anti-systemd uproar with a grain of salt, because I remember when:

Packages were evil, because real Linux users built everything from source code and kept strict
control of what went on their systems.
Dependency-resolving package managers were evil, because real Linux users resolved dependency
hells manually.
Except for apt-get, which was always good, so only Yum was evil.
Because Red Hat was the Microsoft of Linux.
Yay Ubuntu!
Boo hiss Ubuntu!

And on and on...as I have said lo so many times before, changes are upsetting. They mess with our

work�ow, which is no small thing because any disruption has a real productivity cost. But we are still in

the infant stage of computing, so it's going to keep changing and advancing rapidly for a long time. I'm

sure you know people who are stuck in the mindset that once you buy something, like a wrench or a piece

of furniture or a pink �amingo lawn ornament, it is forever. These are the people who are still running

Windows Vista, or deity help us Windows 95 on some ancient, feeble PC with a CRT monitor, and who

don't understand why you keep bugging them to replace it. It still works, right?

Which reminds me of my greatest triumph in keeping an old computer running long after it should have

been retired. Once upon a time a friend had this little old 286 running some ancient version of MS-DOS.

She used it for a few basic tasks like appointments, diary, and a little old accounting program that I wrote

in BASIC for her check register. Who cares about security updates, right? It's not connected to any

network. So from time to time I replaced the occasional failed resistor or capacitor, power supply, and

CMOS battery. It just kept going. Her tiny old amber CRT monitor grew dimmer and dimmer, and �nally

it died after 20+ years of service. Now she is using an old Thinkpad running Linux for the same tasks.

If there is a moral to this tangent it escapes me, so let's get busy with systemd.

Runlevels vs. States

SysVInit uses static runlevels to create di�erent states to boot into, and most distros use �ve:

Single-user mode
Multi-user mode without network services started
Multi-user mode with network services started
System shutdown
System reboot.

Me, I don't see a lot of practical value in having multiple runlevels, but there they are. Instead of

runlevels, systemd allows you to create di�erent states, which gives you a �exible mechanism for

creating di�erent con�gurations to boot into. These states are composed of multiple unit �les bundled

into targets. Targets have nice descriptive names instead of numbers. Unit �les control services, devices,

sockets, and mounts. You can see what these look like by examining the prefab targets that come with

systemd, for example /usr/lib/systemd/system/graphical.target, which is the default on CentOS 7:

[Unit]

Intro to Systemd Runlevels and Service Managem... https://www.linux.com/learn/intro-systemd-runleve...

2 de 4 25/05/16 16:26

Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
After=multi-user.target
Conflicts=rescue.target
Wants=display-manager.service
AllowIsolate=yes
[Install]
Alias=default.target

So what do unit �les look like? Let us peer into one. Unit �les are in two directories:

/etc/systemd/system/
/usr/lib/systemd/system/

The �rst one is for us to play with, and the second one is where packages install unit �les. /etc/systemd

/system/ takes precedence over /usr/lib/systemd/system/. Hurrah, human over machine. This is the

unit �le for the Apache Web server:

[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target
[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd/ $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/bin/kill -WINCH ${MAINPID}
KillSignal=SIGCONT
PrivateTmp=true
[Install]
WantedBy=multi.user.target

These �les are fairly understandable even for systemd newcomers, and unit �les are quite a bit simpler

than a SysVInit init �le, as this snippet from /etc/init.d/apache2 shows:

SCRIPTNAME="${0##*/}"
SCRIPTNAME="${SCRIPTNAME##[KS][0-9][0-9]}"
if [-n "$APACHE_CONFDIR"] ; then

if ["${APACHE_CONFDIR##/etc/apache2-}" != "${APACHE_CONFDIR}"] ; then
 DIR_SUFFIX="${APACHE_CONFDIR##/etc/apache2-}"
else
 DIR_SUFFIX=

The whole �le is 410 lines.

You can view unit dependencies, and it's always surprising to me how complex they are:

$ systemctl list-dependencies httpd.service

cgroups

cgroups, or control groups, have been present in the Linux kernel for some years, but have not been

used very much until systemd. The kernel documentation says: (https://www.kernel.org
/doc/Documentation/cgroups/cgroups.txt) "Control Groups provide a mechanism for

aggregating/partitioning sets of tasks, and all their future children, into hierarchical groups with

specialized behaviour." In other words, it has the potential to control, limit, and allocate resources in

multiple useful ways. systemd uses cgroups, and you can see them. This displays your entire cgroup tree:

$ systemd-cgls

Intro to Systemd Runlevels and Service Managem... https://www.linux.com/learn/intro-systemd-runleve...

3 de 4 25/05/16 16:26

You can generate a di�erent view with the good old ps command:

$ ps xawf -eo pid,user,cgroup,args

Useful Commands

This command reloads the con�guration �le of a daemon, and not its systemd service �le. Use this when

you make a con�guration change and want to activate it with least disruption, like this example for

Apache:

systemctl reload httpd.service

Reloading a service �le completely stops and then restarts a service. If it is not running this starts it:

systemctl restart httpd.service

You can restart all daemons with one command. This reloads all unit �les, and re-creates the whole

systemd dependency tree:

systemctl daemon-reload

You can reboot, suspend, and powero� as an ordinary unprivileged user:

$ systemctl reboot
$ systemctl suspend
$ systemctl poweroff

As always, there is much, much more to learn about systemd. Here We Go Again, Another Linux Init:

Intro to systemd (/learn/tutorials/524577-here-we-go-again-another-linux-
init-intro-to-systemd)and Understanding and Using Systemd (http://www.linux.com
/learn/tutorials/788613-understanding-and-using-systemd)are good introductions

to systemd, with links to more detailed resources.

Intro to Systemd Runlevels and Service Managem... https://www.linux.com/learn/intro-systemd-runleve...

4 de 4 25/05/16 16:26

