
Me gusta 0

≡ Menu

Home
Free eBook
Start Here
Contact
About

Explore GCC Linking Process Using LDD,
Readelf, and Objdump
by Himanshu Arora on October 17, 2011

Tweet

Linking is the final stage of the gcc compilation process.

In the linking process, object files are linked together and all the references to external symbols are
resolved, final addresses are assigned to function calls, etc.

In this article we will mainly focus on the following aspects of gcc linking process:

1. Object files and how are they linked together
2. Code relocations

Before you read this article, make sure you understand all the 4 stages that a C program has to go
through before becoming an executable (pre-processing, compilation, assembly and linking).

LINKING OBJECT FILES

Lets understand this first step through an example. First create the following main.c program.

$ vi main.c
#include <stdio.h>

extern void func(void);

int main(void)
{
 printf("\n Inside main()\n");
 func();

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

1 de 8 12/3/20 18:24

 return 0;
}

Next create the following func.c program. In the file main.c we have declared a function func() through
keyword ‘extern’ and have defined this function in a separate file func.c

$ vi func.c
void func(void)
{
 printf("\n Inside func()\n");
}

Create the object file for func.c as shown below. This will create the file func.o in the current directory.

$ gcc -c func.c

Similarly create the object file for main.c as shown below. This will create the file main.o in the current
directory.

$ gcc -c main.c

Now execute the following command to link these two object files to produce a final executable. This will
create the file ‘main’ in the current directory.

$ gcc func.o main.o -o main

When you execute this ‘main’ program you’ll see the following output.

$./main
Inside main()
Inside func()

From the above output, it is clear that we were able to link the two object files successfully into a final
executable.

What did we acheive when we separated function func() from main.c and wrote it in func.c?

The answer is that here it may not have mattered much if we would have written the function func() in
the same file too but think of very large programs where we might have thousands of lines of code. A
change to one line of code could result in recompilation of the whole source code which is not
accceptable in most cases. So, very large programs are sometimes divided into small peices which are
finaly linked together to produce the executable.

The make utility which works on makefiles comes into the play in most of these situations because this
utility knows which source files have been changed and which object files need to be recompiled. The
object files whose corresponding source files have not been altered are linked as it is. This makes the
compilation process very easy and manageable.

So, now we understand that when we link the two object files func.o and main.o, the gcc linker is able to
resolve the function call to func() and when the final executable main is executed, we see the printf()
inside the function func() being executed.

Where did the linker find the definition of the function printf()? Since Linker did not give any error that
surely means that linker found the definition of printf(). printf() is a function which is declared in stdio.h
and defined as a part of standard ‘C’ shared library (libc.so)

We did not link this shared object file to our program. So, how did this work? Use the ldd tool to find out,
which prints the shared libraries required by each program or shared library specified on the command
line.

Execute ldd on the ‘main’ executable, which will display the following output.

$ ldd main
linux-vdso.so.1 => (0x00007fff1c1ff000)
libc.so.6 => /lib/libc.so.6 (0x00007f32fa6ad000)

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

2 de 8 12/3/20 18:24

/lib64/ld-linux-x86-64.so.2 (0x00007f32faa4f000)

The above output indicates that the main executable depends on three libraries. The second line in the
above output is ‘libc.so.6’ (standard ‘C” library). This is how gcc linker is able to resolve the function call
to printf().

The first library is required for making system calls while the third shared library is the one which loads
all the other shared libraries required by the executable. This library will be present for every executable
which depends on any other shared libraries for its execution.

During linking, the command that is internally used by gcc is very long but from users prespective, we
just have to write.

$ gcc <object files> -o <output file name>

CODE RELOCATION

Relocations are entries within a binary that are left to be filled at link time or run time. A typical
relocation entry says: Find the value of ‘z’ and put that value into the final executable at offset ‘x’

Create the following reloc.c for this example.

$ vi reloc.c
extern void func(void);

void func1(void)
{
 func();
}

In the above reloc.c we declared a function func() whose definition is still not provided, but we are calling
that function in func1().

Create an object file reloc.o from reloc.c as shown below.

$ gcc -c reloc.c -o reloc.o

Use readelf utility to see the relocations in this object file as shown below.

$ readelf --relocs reloc.o
Relocation section '.rela.text' at offset 0x510 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend
000000000005 000900000002 R_X86_64_PC32 0000000000000000 func - 4
...

The address of func() is not known at the time we make reloc.o so the compiler leaves a relocation of type
R_X86_64_PC32. This relocation indirectly says that “fill the address of the function func() in the final
executable at offset 000000000005”.

The above relocation was corresponding to the .text section in the object file reloc.o (again one needs to
understand the structure of ELF files to understand various sections) so lets disassemble the .text section
using objdump utility:

$ objdump --disassemble reloc.o
reloc.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <func1>:
 0: 55 push %rbp
 1: 48 89 e5 mov %rsp,%rbp
 4: e8 00 00 00 00 callq 9 <func1+0x9>
 9: c9 leaveq
 a: c3 retq

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

3 de 8 12/3/20 18:24

Tweet Me gusta 0

In the above output, the offset ‘5’ (entry with value ‘4’ relative to starting address 0000000000000000)
has 4 bytes waiting to be writen with the address of function func().

So, there is a relocation pending for the function func() which will get resolved when we link reloc.o with
the object file or library that contains the defination of function func().

Lets try and see whether this relocation gets reolved or not. Here is another file main.c that provides
defination of func() :

$ vi main.c
#include<stdio.h>

void func(void) // Provides the defination
{
 printf("\n Inside func()\n");
}

int main(void)
{
 printf("\n Inside main()\n");
 func1();
 return 0;
}

Create main.o object file from main.c as shown below.

$ gcc -c main.c -o main.o

Link reloc.o with main.o and try to produce an executable as shown below.

$ gcc reloc.o main.o -o reloc

Execute objdump again and see whether the relocation has been resolved or not:

$ objdump --disassemble reloc > output.txt

We redirected the output because an executable contains lots and lots of information and we do not want
to get lost on stdout.
View the content of the output.txt file.

$ vi output.txt
...
0000000000400524 <func1>:
400524: 55 push %rbp
400525: 48 89 e5 mov %rsp,%rbp
400528: e8 03 00 00 00 callq 400530 <func>
40052d: c9 leaveq
40052e: c3 retq
40052f: 90 nop
...

In the 4th line, we can clearly see that the empty address bytes that we saw earlier are now filled with
the address of function func().

To conclude, gcc compiler linking is such a vast sea to dive in that it cannot be covered in one article.
Still, this article made an attempt to peel off the first layer of linking process to give you an idea about
what happens beneath the gcc command that promises to link different object files to produce an
executable.

> Add your comment

If you enjoyed this article, you might also like..

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

4 de 8 12/3/20 18:24

1. 50 Linux Sysadmin Tutorials
2. 50 Most Frequently Used Linux Commands

(With Examples)
3. Top 25 Best Linux Performance Monitoring and

Debugging Tools
4. Mommy, I found it! – 15 Practical Linux Find

Command Examples

5. Linux 101 Hacks 2nd Edition eBook

Awk Introduction – 7 Awk Print Examples
Advanced Sed Substitution Examples
8 Essential Vim Editor Navigation
Fundamentals
25 Most Frequently Used Linux IPTables
Rules Examples
Turbocharge PuTTY with 12 Powerful Add-
Ons

{ 9 comments… add one }

E. Menout October 17, 2011, 5:42 am

Very Good. Thanks

Link
Jalal Hajigholamali October 17, 2011, 6:18 am

Hi,
Very nice and usable article

Link
behzad October 18, 2011, 11:32 am

thanks again for another quality article,
it will be great if you mention at the end a few sources or references that you would recommend
for the people who want to know more, with a short comment on each.

Link
Himanshu October 18, 2011, 6:56 pm

@behzad.
Sure I’ll take care of this from now on and will definitely add some references at the end of my
articles.

Link
Viren October 19, 2011, 6:16 am

In the last example’s program you are calling func1() but the defined function name is func().
Please correct it.

Link
Himanshu October 19, 2011, 11:05 pm

@Viren
I am calling func1() which is defined in reloc.c.

Link
Arun Saha November 11, 2011, 12:00 am

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

5 de 8 12/3/20 18:24

Consider including in func.c so that it does not throw implicit declaration warning.

Link
vaibhav sharma February 24, 2013, 2:59 am

very good material

Link
BSpider March 15, 2015, 8:22 am

whats the difference between

$ gcc -o

and

$ gcc -c reloc.c -o reloc.o

“-o” operates differently in both lines
could you explain it ?

Thanks,

Link

Leave a Comment

Name

Email

Website

Comment

Submit

Notify me of followup comments via e-mail

Next post: How to Backup Ubuntu Desktop Using sbackup Simple Backup GNOME Tool

Previous post: Dennis Ritchie – Father of C Programming Language

RSS | Email | Twitter | Facebook | Google+

Search

EBOOKS

Linux 101 Hacks 2nd Edition eBook - Practical Examples to Build a Strong Foundation in
Linux
Bash 101 Hacks eBook - Take Control of Your Bash Command Line and Shell Scripting

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

6 de 8 12/3/20 18:24

Sed and Awk 101 Hacks eBook - Enhance Your UNIX / Linux Life with Sed and Awk
Vim 101 Hacks eBook - Practical Examples for Becoming Fast and Productive in Vim Editor
Nagios Core 3 eBook - Monitor Everything, Be Proactive, and Sleep Well

Sé el primero de tus amigos en indicar que te
gusta.

The Geek Stuff
17 244 Me gusta

Me gusta esta página Compartir

POPULAR POSTS

15 Essential Accessories for Your Nikon or Canon DSLR Camera
12 Amazing and Essential Linux Books To Enrich Your Brain and Library
50 UNIX / Linux Sysadmin Tutorials
50 Most Frequently Used UNIX / Linux Commands (With Examples)
How To Be Productive and Get Things Done Using GTD
30 Things To Do When you are Bored and have a Computer
Linux Directory Structure (File System Structure) Explained with Examples
Linux Crontab: 15 Awesome Cron Job Examples
Get a Grip on the Grep! – 15 Practical Grep Command Examples
Unix LS Command: 15 Practical Examples
15 Examples To Master Linux Command Line History
Top 10 Open Source Bug Tracking System
Vi and Vim Macro Tutorial: How To Record and Play
Mommy, I found it! -- 15 Practical Linux Find Command Examples
15 Awesome Gmail Tips and Tricks
15 Awesome Google Search Tips and Tricks
RAID 0, RAID 1, RAID 5, RAID 10 Explained with Diagrams
Can You Top This? 15 Practical Linux Top Command Examples
Top 5 Best System Monitoring Tools
Top 5 Best Linux OS Distributions
How To Monitor Remote Linux Host using Nagios 3.0
Awk Introduction Tutorial – 7 Awk Print Examples
How to Backup Linux? 15 rsync Command Examples
The Ultimate Wget Download Guide With 15 Awesome Examples
Top 5 Best Linux Text Editors
Packet Analyzer: 15 TCPDUMP Command Examples
The Ultimate Bash Array Tutorial with 15 Examples
3 Steps to Perform SSH Login Without Password Using ssh-keygen & ssh-copy-id
Unix Sed Tutorial: Advanced Sed Substitution Examples
UNIX / Linux: 10 Netstat Command Examples
The Ultimate Guide for Creating Strong Passwords
6 Steps to Secure Your Home Wireless Network
Turbocharge PuTTY with 12 Powerful Add-Ons

CATEGORIES

Linux Tutorials
Vim Editor
Sed Scripting

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

7 de 8 12/3/20 18:24

Awk Scripting
Bash Shell Scripting
Nagios Monitoring
OpenSSH
IPTables Firewall
Apache Web Server
MySQL Database
Perl Programming
Google Tutorials
Ubuntu Tutorials
PostgreSQL DB
Hello World Examples
C Programming
C++ Programming
DELL Server Tutorials
Oracle Database
VMware Tutorials

About The Geek Stuff

 My name is Ramesh Natarajan. I will be posting instruction guides, how-to,
troubleshooting tips and tricks on Linux, database, hardware, security and web. My focus is to write
articles that will either teach you or help you resolve a problem. Read more about Ramesh Natarajan and
the blog.

Contact Us

Email Me : Use this Contact Form to get in touch me with your comments, questions or suggestions
about this site. You can also simply drop me a line to say hello!.

Follow us on Google+

Follow us on Twitter

Become a fan on Facebook

Support Us

Support this blog by purchasing one of my ebooks.

Bash 101 Hacks eBook

Sed and Awk 101 Hacks eBook

Vim 101 Hacks eBook

Nagios Core 3 eBook

Copyright © 2008–2018 Ramesh Natarajan. All rights reserved | Terms of Service

Explore GCC Linking Process Using LDD, Readelf,... https://www.thegeekstuff.com/2011/10/gcc-linking/

8 de 8 12/3/20 18:24

