GASTEIZKO
INGENIARITZA
ESKOLA
ESCUELA
Universidad Euskal Herriko DE INGENIERIA

del Pais Vasco Unibertsitatea DE VITORIA-GASTEIZ

Actividad 1
C para SO

Introduccién a los Sistemas Operativos,
2025-2026

Pablo Gonzdlez Nalda

@creative
Depto. de Lenguajes y Sistemas Informdticos commons

EU de Ingenieria de Vitoria-Gasteiz,

UPV/EHU
BY SA

26 de enero de 2026

https://lsi.vc.ehu.eus/pablogn/
https://lsi.vc.ehu.eus/
http://www.ehu.es/eui
https://www.ehu.eus/
http://creativecommons.org/licenses/by-sa/2.5/es/
http://creativecommons.org/licenses/by-sa/2.5/es/

. o Contenidos de la presentacion

iskal Herril
del Pais Vasco ~ Unibertsitatea

© :Porqué C?
e Parte basica de la sintaxis de C
e Control de flujo

Contenidos

© Matrices
e Cadenas
e Subprogramas

@ Qué es un puntero
e Punteros y tablas
e Punteros y estructuras

@ :Méas preguntas?

2/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

éPor qué C?

© iPorquéc

?

3/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

éPor qué C?

¢Por qué C?

Energy Time Mb
(c)C 1.00) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 () C 107
(c) Ada 170 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(¢) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(¢) Swift 2.79) Lisp 3.40 (c) Swift W7
(c) Haskell 3.10 (c) Haskell 355 (i) Python 2.80
(v) C# 3.14 (¢) Swift 4.20 (c) Ocaml 2.82
() Go 3.23 (¢) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3:52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 127 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 425
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i) Trubv 46.54 (i) Rubv 5934 (i) Lua 6:7.2

f/58

¢Por qué C?

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

éPor qué C?

Y porque C se disefié para programar Unix, permite un
control total del hardware y es un estandar.

5/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Sintaxis basica

9 Parte basica de la sintaxis de C

6/58

’

Programa “Hola, muy buenas...’

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Programa simple:

Sintaxis basica

/* Programa simple */
/* Comentario. No pueden anidarse #*/
#include <stdio.h>
main() {
printf ("\nHola, muy buenas...\n");

-

IS

gcc —-o hola hola.c # compilar en el fichero de salida hola
./hola # ejecutar el fichero hola del directorio actual

7/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Sintaxis bésica

Variables

-

10

Lenguaje fuertemente tipado, sin orientacién a objetos.

#include <stdio.h>

main() {

/* entero con signo */
/* cardcter ASCII */
/* real simple precisidén */

int entero;
char caracter;
float real;
entero = 2+2;
caracter = 'a';
real=6.023E23;

printf ("\nResultado:

printf ("\treal %f",

%d\t' sc'’
real);

",entero,

caracter) ;

8/58

Constantes

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Sintaxis bésica

i

Constantes en el cédigo: 66

Constantes de preprocesador (sustituir antes de

compilar) con #define.

Constantes con const

#include <stdio.h>
#define MAX 50
main() {

const int entero=3;

const float PI=3.1415926;

printf ("\nResultado:
printf ("\treal %f",

%d, otros
real);

%d %d",entero,

66, MAX);

9/58

Control de compilacion

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

En el cédigo compilado sélo habrd una de los dos print £
segun esté o no la linea 2.

Sintaxis bésica

#include <stdio.h>
#define PRUEBA
main() {
#ifdef PRUEBA
printf ("Prueba");
#else
7 printf ("No hay prueba");
#fendif
}

-

IN

10/58

Control de compilacion

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

La inclusién o no de la definicion PRUEBA se proporciona
Sitird bl en el momento de compilacién.

#include <stdio.h>
main() {
#ifdef PRUEBA
printf ("Prueba");
#else
6 printf ("No hay prueba");
#tendif
}

w

1|gcc —-o prueba prueba.c -DPRUEBA

11/58

Dualidad caracter/valor ASCII

Universidad Euskal Herriko
el Pais Vasco Unibertsitatea

Contenidos

Sintaxis bésica

N

11

Por ejemplo, una variable de un byte (char) puede
manipularse como caracteres o enteros, ya que los
caracteres son valores ASCII.

Una resta entre caracteres es la resta de sus valores
ASCII.

Un char se puede imprimir como caracter o como entero.

#include <stdio.h>
main() {

char a='C',b="f', ¢='3";

int x;

x=a-'A";

printf ("\nDistancia: %d",x);

printf ("\nValor numérico: %d", c='0"'); /* 51-48 =%/
a=a+('a'-'A"); /* +32 pasa a minusculasx*/
b=b-32; /* Pasa a mayusculas */

printf ("\n%c \t%c", a,b); /* resultado */

12/58

Operadores matematicos

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Sintaxis bésica Java heredé las mismas operaciones.

1|a=-b;

a=a+b;

a=c-b;

4 |a=c*b;

a=c/b; Si son enteros, sélo da el cociente de la
divisién. Si uno de ellos (por lo menos) es real, da la
divisién con todos los decimales posibles

a=c%b; Sélo se puede usar con enteros, y da el resto de
la divisién entera

13/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Sintaxis bésica

Abreviaturas

©

a=a+l; -> a++; o también ++a; (Hay diferencia)
b=b-1; -> b-—; o también —--b; (Hay diferencia)
b=b+c;, >Db +=c;
b=b-c¢c;, =>b -=c¢;
b=Db * c; => b x=c;
b=b/c¢; -=>b /=c;
[rkAkk kA Ak A* [iCuidado!! rxkkkkkkkkkk/
c=3;
b=c+l; -> b tiene 4 y c tiene 3 (d=c+l;
b=c++; -> b tiene 3 y c tiene 4 (d=c; c=c+l;
b=++c; -> b tiene 4 y c tiene 4 (c=c+l; d=c;

o'

o

o

14/58

L Entrada/Salida

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

-

Sintaxis basica

10

13

16

#include <stdio.h>

void main () {
int num;
char car, nombre[l1l0]; /#* Cadena de caracteres #*/
printf ("Introduce un numero entero");
scanf ("%d", &num); /* enteros */
printf (" la variable \"car\": ");
fflush(stdin); /#* Vacia el biufer del teclado #*/
scanf ("%c", &car); /+ caracteres #*/
fflush(stdin);
printf ("\nIntroduce un nombre");
scanf ("%s", nombre); /+* cadena */
printf ("\n\nEl ntmero es %d, \t y el ", num);
printf ("caracter %c.\n", car);
printf ("La cadena es %s", nombre);

15/58

Operaciones légicas con bits

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos #include <stdio.h>

main() {
char dato, mascara=0x0l; /* mascara=1 #*/
int i, cont=0;

5 scanf ("%c", &dato);

for (i=0; i<8; i++) {
printf ("%d", ((dato&mascara) !=0));

N

Sintaxis bésica

8 if ((dato & mascara) !=0) cont++; /+ and de bits */
mascara = mascara << 1l; /# Desplazamiento de #*/
} /* bits a la izq */

11 printf ("\nEn '%c' hay %d unos\n", dato,cont);

}
14 |& and >> Desplazamiento a la derecha

| or << Desplazamiento a la izquierda

~ not Lo mismo con iguales &= |= ~=
17 |~ xor <<= >>=

16/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

e Control de flujo

Control de flujo

17/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Control de flujo

Condicionales

-

IS

~

if (b == 0) {

a=1;
}
else {
a=2;
}

/* Equivalente pero cuesta leerlo #*/
a=(b==0?212:2);

18/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Control de flujo

Operaciones condicionales

Il
&&

! (expresién)

)

menor que
menor o igual que
igual (dos iguales)
distinto de
mayor que
mayor o igual que
uno u otro, o los dos (or 1égico)
uno y otro (and 16gico)

no es cierto, no ocurre ese algo (not légico

19/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

¢Por qué C?
Sintaxis bésica
Control de flujo
Matrices
Cadenas
Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras
iMas

preguntas?

12

15

18

21

Ejemplo de condicionales: i f

/* if anidados adecuados para switch.C x/
#include <stdio.h>
int nota;
void main() {
printf("Dame tu nota ");
scanf("%d", ¬a);
if(nota==0|lnota==1||nota==2|| nota==3 ||nota==4) {
printf("\nLo siento, has suspendido \n");
printf("Si intentas otra, apruebas\n\n");

else if (nota==5 || nota==6)
printf("\nUn aprobado \n");
else if (nota==7 || nota==8)
printf("\nUn notable, muy bien \n");
else if (nota==9)
printf("\nSobresaliente \n");
else if (nota==10) printf("\nFelicidades, un 10 \n");
else if (nota==11) {
printf("\n Menos lobos... \n");
printf("\n;Qué nota es ésa? \n");
} else printf("\n;Qué nota es ésa? \n");
getch(); /* para el programa hasta pulsar una teclax/

20/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Control de flujo

7

10

13

16

19

22

Ejemplo de condicionales: switch

#include <stdio.h>
int nota;
void main(){
printf("Dame tu nota "); scanf(", &ota);
switch(nota){
case 0: case 1: case 2: case 3:case 4:
printf("\nLo siento, has suspendido \n");
printf("Si intentas otra vez, apruebas\n\n");
break;
case 5:case 6: printf("\nUn aprobado \n"); break;
case 7:
case 8:
printf("\nUn notable, muy bien \n");
break;
case 10:
printf("\nFelicidades, un 10 \n");
case 9: printf("\nSobresaliente \n"); break;
case 11:
printf("\n Menos lobos... \n");
default:
printf("\n;Qué nota es ésa? \n");
} /% fin switch =/
getch(); /* para el programa hasta pulsar teclax*/
}

21/58

Ejemplo de iterativas

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
#include <stdio.h>

void main() {

3 char sn;
) int n=10;
Control de flujo do {
6 printf ("\n;seguimos? (S/N)");

fflush(stdin);
scanf ("%c", &sn);
9 } while (sn=='s' || sn=='S");

while (n>0) {

12 printf("\t%d,",n);
n-—-;
}
15 printf("\t%d.",n);
}

22/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Control de flujo

2

11

14

Ejemplo de iterativas: for

for (cont=1l; cont<=10; cont=cont+l)
printf ("\njHola!");

// Para imprimir los miltiplos de 7 menores de 500:

for (cont=7; cont<500; cont=cont+7)
printf ("\n%d", cont) ;

// Y si queremos una cuenta atrds:

for (cont=10; cont>0; cont=cont-1)
printf ("\n%d", cont);

// O también:

for (cont=10; cont>0; cont--)
printf ("\n%d", cont);

// O también:

cont=10;

while (cont>0)
printf ("\n%d", cont--);

El factorial en una linea (digamos que es ilegible):

for (i=1, f=1; i<=x; f*=i, i++);
for (i=£f=1; i<=x; f*=i++);

23/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Matrices

e Matrices

24/58

Tablas, arrays, vectores, matrices, arreglos

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
1
4
Matrices
7
10
13

#include <stdio.h>
#define N 10
main() {
int i, v[N], aux;
for (i=0; i<N; i++) {
printf ("\nDame el %d° valor: ",i+l);
scanf ("%d", &v[i]);
}
aux=v[0];
for (i=0; i<N-1; i++)
v[i]=v[i+l];
v [N-1]=aux;
printf ("\nDesplazada a la izquierda: \n");
for (i=0; i<N; i++) printf("\t%d ", v[i]);

25/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Cadenas

e Cadenas

26/58

Cadenas o strings

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos En C, una cadena de caracteres es una tabla de
caracteres ASCII (un byte) terminada en un byte con cero
binario (ASCIT 0 o "0\0’)

char cad[40];

cad[0] = 'h';
3|cad[l] = 'o';
S cad[2] = '1"';
cad[3] = 'a';
6|cad[4] = '\0'; /# cad[4] = 0; =*/

char cad[40]= {'H','o','1l','a','\0'};
char cad[40]= "Hola";

©

En el resto de posiciones hay valores indeterminados, lo
que contenia la memoria antes de reservar ese trozo
(probablemente ceros, ya que hay memoria de sobra).

27/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Subprogramas

e Subprogramas

28/58

Subprogramas

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
#include <stdio.h>
long fact (int n); /#* declaracidén */
3|/main() {
printf ("\nEl factorial de 14 es %1d", fact(14));
}
6 |long fact (int n) { /* definicidén #*/
long r=11; /# constante 1 de tipo long #*/
int i;
Subprogramas o | gor (i=1; i<=n; it++)
rx= (long) i; /* conversién o cast opcional de int a
long */
return r;
12|}

La funcién devuelve un long a partir del dato de entrada
int

29/58

Funciones y Booleanos

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Subprogramas 6

12

15

Los booleanos son enteros. Cualquier valor distinto de

cero es verdadero.

#include <stdio.h>
#define VERD 1
#define FALSO 0

int es_negativo (int x) {
if (x<0)
return VERD;
else
return FALSO;

}

main() {
if (es_negativo(5))
printf ("5 es negativo");

30/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
3
6
9
Subprogramas

12

15

18

Procedimientos

#include <stdio.h>
#define N 10
void pedir tabla(int t[])
int i;
for (i=0; i<N; i++)
scanf ("%d", &t[i]);

int i;

main() {
int v[N];
pedir_tabla(v);
mostrar_tabla(v);

{

void mostrar tabla(int t[]) {

for (i=0; i<N; i++) printf("\t%d ", t[i]);

31/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Manejo de ficheros

Manejo de ficheros

E/S estandar

printf ("formato", lista de expresiones);
scanf ("formato", lista de expresiones);

E/S no estandar

fprintf (fich, "formato", lista de expresiones);
fscanf (fich, "formato", lista de expresiones);

-

Conversién en memoria

1 |sprintf (cadena, "formato", lista de expresiones);

32/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

N

Manejo de ficheros

11

Manejo de ficheros

Cifrado César (siguiente caracter)

#include <stdio.h>
#define EOF (-1)
void main() {
FILE *entrada, =xsalida;

int i;

char ce, cs;

entrada= fopen("entrada.txt","r");

salida = fopen("salida.txt","w"

while ((ce=getc (entrada)) !=EOF) {
cs = ce+l;
putc(cs,salida);

}

}

33/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Argumentos del
programa

Argumentos del programa

N

#include <stdio.h>
void main(int argc, char xargv[]) {
int i;
printf ("\nPrograma: %s\n",argv[0]);
for (i=1; i<argc;i++)
printf ("argumento %d: %s\n",i,argv[i]);

34/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Qué es un
puntero

@ Qué es un puntero

35/58

Contenidos

Qué es un
puntero

Basado en...

Basado en: A TUTORIAL ON POINTERS AND ARRAYS IN C
by Ted Jensen

http://pweb.netcom.com/~t jensen/ptr/cpoint.htm

36/58

http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

Punteros

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Los punteros o apuntadores (pointers) son variables que
contienen una posicién de memoria, normalmente de
otra variable de un tipo de datos determinado.

Contenidos

int k, j;
2 k=2; 3=7;

int *ptr; /* p es un puntero a enteros */

5|// Es decir, contiene una direccidén de memoria, y el

lenguaje sélo permite que apunte a enteros

Qué es un ptr=NULL;

(HILER ptr=&k; /* ptr contiene la direccidén de memoria de k */

8|j=+ptr; /* j recibe lo apuntado por ptr, un entero con el
valor 2 */

ptr=7; / en ese entero se introduce el 7 */

11 [printf("j %d Q@ %p\n", j, (void *)&j);
printf("k %d @ %p\n", k, (void =)&k);
printf("ptr %p @ %p\n", ptr, (voidx)é&ptr);
14 |printf (" Apuntado por ptr es %d\n", *ptr);

37/58

%® Bytes de un entero con punteros

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Orden de los bytes de un entero:

Contenidos
1|#include <stdio.h>
int main() {
int n=0x05060708; // en hexadecimal, 4 bytes
4 char *p;
p = (char %) &n; /# &n apunta a un entero y se
convierte a ptr a cardcterx/
for (int b=0;b<4;b++) {
7 printf ("\nbyte %d \t%p\n", *p, p);
pt++; // se suma 1 porque es un puntero a char
Qué es un }
puntero

10

13

/* lel mismo for en dos lineas x*/
for (int b=0;b<4;b++)

printf ("\nbyte %d \t%p\n", =*p,
return O;

pt+);

1942
1943
1944

[

vi p.c
gcc -o p p.c
./p

38/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Qué es un
puntero

Variables por valor y por referencia

i

Las variables simples, si no se usan punteros, se pasan
por valor:

int suma (int a, int b) return a+b;
s= suma(c,d);

Las variables compuestas siempre se pasan por
referencia por ser su nombre un puntero al primer
elemento:

void desplaza (int a[]);
int t1[10];
desplaza(tl);

39/58

Variables por valor y por referencia (2)

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
Para pasar por referencia las variables simples hay que
usar punteros:
void intercambia (int * a, int x b) {
int x;
3 X=+%a;
*a=xb;
*b=x;
Qué es un 6|}
puntero

// Y en el programa principal:

int c,d;
intercambia (&c, &d);

40/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Qué es un
puntero

Variables por valor y por referencia (3)

10

Una funcién puede devolver un puntero, que es un dato

simple. Hay que tener en cuenta que si se crea una
cadena dentro de la funcién se reserva en la pila, y al
salir de la funcién se puede perder.

#include <stdio.h>
char x pidecadena (char * cad) {
scanf ("%s",cad);
return cad;
}
void main () {
char c[10];
printf ("\nDime una cadena: ");
printf ("Me has dado: \"%s\"\n", pidecadena(c));

41/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Qué es un
puntero

Core

Core es un volcado de memoria (core dump) cuando un
programa por ejemplo accede a memoria gque no es suya.

En Unix se escribe un fichero core con el contenido de la
memoria del programa para depurar. En Windows se
escribe un fichero de extensién . dmp

42/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Punteros y
tablas

@ Punteros y tablas

43/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Punteros y
tablas

Punteros y tablas (arrays)

Puntero para recorrer una tabla

int tabla[] = {1,23,17,4,-5,100};

int *ptr;

int i;

ptr = &tabla[0]; /#*1*/
ptr = tabla; /*2%/

printf ("\n\n");
for (i = 0; 1 < 6; i++) {

8 /*Ax/ printf ("tabla[%d] = %d",i,tabla[i]);

/*Bx*/ printf("ptr + %d = %d\n",i, *(ptr + i));
tabla+i

//

44/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

N

Punteros y
tablas 8

11

14

Dos formas de llenar un array

Llenamos un array reservado en el monticulo en el puntero p
accediendo por el nombre del array p dandole el valor de la

posicién

mas 10, y con un puntero g que al incrementarse con

g++ se le afade 4 por ser puntero a entero. Con g se le da

x+20.

int

a=p;
for

}

#include <stdio.h>
#include <stdlib.h> // man malloc nos dice su libreria
int main() {

*P, *q;

p=malloc(l0*sizeof (int));

(int x=0;x<10; x++) {

plxl= (x+10);

printf("#%d: %d \t%d \n", x, p[x], *q);
*q = (x+20);

printf("#%d: %d \t3d \n", x, plx], *q);
printf("%p %p\n", &plx], q++);

return O;

45/

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Punteros y
estructuras

© Punteros y estructuras

46/58

'f'a’ Estructuras

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos
struct ficha {

char ap[20];

3 char nom[20];

int edad;

float altura;

6[};

struct ficha yo; // reserva los 48 bytes
// es una variable global

int main(void) {

strcpy(yo.ap, "G.N.");
12 strcpy (yo.nom,"P.");
printf("\n%s, ",yo.ap);
printf ("%s\n",yo.nom);
15 return O;

Estructuras

47/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

N

Al

Estructuras y punteros

Estructuras y punteros

struct ficha *p;

P = &yo; // no reserva, ya tenemos la del cédigo anterior
(*p) .altura = 1.85;

p—>altura = 1.85; // sintaxis mads clara

void imprime (struct ficha xp)

{
printf("\n%s, ", p->ap);
printf("%s ", p->nom);
printf ("%d\n", p->altura);
}

48/58

Estructurasymalloc

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

En este caso si que reservamos memoria para una ficha
en el monticulo (heap), averiguando su tamano con
sizeof y convirtiendo el tipo del puntero devuelto por
malloc para poder hacer la asignacién.

-

struct ficha xp;
p = (struct ficha *) malloc(sizeof (struct ficha));

Estructuras y malloc

49/58

Usando typedef con estructurasy malloc

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Simplificamos si definimos un tipo usando typedef:

-

typedef struct {
char ap[20];
char nom[20];
4 int edad;
float altura;
} Ficha;
Ficha x*p;
p = (Ficha *) malloc(sizeof(Ficha));

~

Estructuras y malloc

50/58

Uso alternativo de typedef con estructuras

Universidad Euskal Herriko
Wi Sy Y ma lloc

contenidos Creamos un tipo de datos que es puntero a ficha, y
reservamos o ubicamos memoria conmalloc

struct {
char ap[20];
char nom[20];
4 int edad;
float altura;
} ficha;

-

// FICHA es un tipo de datos '"puntero a la estructura ficha

typedef struct ficha *FICHA;

10
FICHA p; // p es un puntero a estructura

13 |p = malloc(sizeof (xFICHA));

Estructuras y malloc

51/58

'f'a’ Tablas de estructuras

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

N

Tablas de estructuras

Con lo anterior podemos crear un vector de 10 punteros

a ficha y crear para cada uno una ficha.

#define TAMTABLA 10

FICHA xt; // struct ficha #*+t;

t = malloc(sizeof (FICHA) *TAMTABLA) ;

for (i=0; i<TAMTABLA; i++) {
t[i]=malloc(sizeof (xFICHA));
llenaficha (t[i]);

52/58

Punteros a funciones

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Punteros a funciones
Contenidos

Creamos cuatro funciones:

#include <stdio.h>

void £1() {
printf ("a\n");
510}
void £2() {
printf ("b\n");
8}
void £3() {
printf("c\n");
11|}
void £4() {
printf ("d\n");
14|}

Podriamos ejecutar una escribiendo (xf1) () queeslo

mismo que f£1 () 53/58

http://www.barrgroup.com/Embedded-Systems/How-To/C-Function-Pointers

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

i

10

13

Punteros a funciones

Punteros a funciones

Y definimos un vector de punteros a cédigo. El nombre de la
funcién es un puntero a la posicién de memoria donde
empieza el cédigo (binario, lenguaje maquina) de la funcién.

int main() {

// tabla de punteros a 4 funciones
void (*t[4]) (void);

int i;

t[0]=£1;

t[1]=£2;

t[2]=£3;

t[3]=£4;

// def alternativa de la tabla
// void (*t[]) (void) = {(f1l, f2, £f3, £f4};

for (i=0; i<=3; i++)
(*t[i]) (); // ejecutamos las funciones

54/58

0

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

Ciclo infinito:

#define TRUE 1
while (1)

while (TRUE)
for(;;)

w

De un programa que ejecuta un bucle infinito (un
demonio por ejemplo) se puede salir cuando el programa
ejecute la llamada al sistema exit(n) que devuelve el
valor n al programa que lo arrancé, normalmente el SO.

También puede terminar si recibe una senal que le mate.

55/58

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

iMas
preguntas?

@ ¢{Mas preguntas?

56/58

L7 {Mas preguntas?

Universidad Euskal Herriko
del Pais Vasco ~ Unibertsitatea

Contenidos

¢Mas preguntas?

iMés preguntas?

57/58

GASTEIZKO
INGENIARITZA
ESKOLA
ESCUELA
Universidad Euskal Herriko DE INGENIERIA

del Pais Vasco Unibertsitatea DE VITORIA-GASTEIZ

Actividad 1
C para SO

Introduccién a los Sistemas Operativos,
2025-2026

Pablo Gonzalez Nalda

@ESANShs
Depto. de Lenguajes y Sistemas Informdticos

EU de Ingenieria de Vitoria-Gasteiz,

UPV/EHU
BY SA

26 de enero de 2026

https://lsi.vc.ehu.eus/
http://www.ehu.es/eui
https://www.ehu.eus/
http://creativecommons.org/licenses/by-sa/2.5/es/
http://creativecommons.org/licenses/by-sa/2.5/es/

	¿Por qué C?
	Parte básica de la sintaxis de C
	Control de flujo
	Matrices
	Cadenas
	Cadenas

	Subprogramas
	Manejo de ficheros
	Argumentos del programa

	Qué es un puntero
	Punteros y tablas
	Punteros y estructuras
	Estructuras
	Estructuras y punteros
	Estructuras y malloc
	Tablas de estructuras
	Punteros a funciones
	

	¿Más preguntas?
	¿Más preguntas?

