
Actividad 1

C para SO
Introducción a los Sistemas Operativos,

2025-2026

Pablo González Nalda

Depto. de Lenguajes y Sistemas Informáticos
EU de Ingeniería de Vitoria-Gasteiz,

UPV/EHU

26 de enero de 2026

https://lsi.vc.ehu.eus/pablogn/
https://lsi.vc.ehu.eus/
http://www.ehu.es/eui
https://www.ehu.eus/
http://creativecommons.org/licenses/by-sa/2.5/es/
http://creativecommons.org/licenses/by-sa/2.5/es/

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Contenidos de la presentación

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

2 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

3 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

¿Por qué C?

4 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

¿Por qué C?

Y porque C se diseñó para programar Unix, permite un
control total del hardware y es un estándar.

5 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

6 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Programa “Hola, muy buenas...”

Programa simple:

1 /* Programa simple */
/* Comentario. No pueden anidarse */
#include <stdio.h>

4 main() {
printf("\nHola, muy buenas...\n");

}

gcc -o hola hola.c # compilar en el fichero de salida hola
./hola # ejecutar el fichero hola del directorio actual

7 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Variables

Lenguaje fuertemente tipado, sin orientación a objetos.

1 #include <stdio.h>
main() {

int entero; /* entero con signo */
4 char caracter; /* carácter ASCII */

float real; /* real simple precisión */
entero = 2+2;

7 caracter = 'a';
real=6.023E23;
printf("\nResultado: %d\t'%c' ",entero, caracter);

10 printf("\treal %f", real);
}

8 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Constantes

Constantes en el código: 66

Constantes de preprocesador (sustituir antes de
compilar) con #define.

Constantes con const

1 #include <stdio.h>
#define MAX 50
main() {

4 const int entero=3;
const float PI=3.1415926;
printf("\nResultado: %d, otros %d %d",entero, 66, MAX);

7 printf("\treal %f", real);
}

9 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Control de compilación

En el código compilado sólo habrá una de los dos printf
según esté o no la línea 2.

1 #include <stdio.h>
#define PRUEBA
main() {

4 #ifdef PRUEBA
printf("Prueba");

#else
7 printf("No hay prueba");
#endif
}

10 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Control de compilación

La inclusión o no de la definición PRUEBA se proporciona
en el momento de compilación.

#include <stdio.h>
main() {

3 #ifdef PRUEBA
printf("Prueba");

#else
6 printf("No hay prueba");
#endif
}

1 gcc -o prueba prueba.c -DPRUEBA

11 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Dualidad carácter/valor ASCII

Por ejemplo, una variable de un byte (char) puede
manipularse como caracteres o enteros, ya que los
caracteres son valores ASCII.

Una resta entre caracteres es la resta de sus valores
ASCII.

Un char se puede imprimir como carácter o como entero.

#include <stdio.h>
2 main() {

char a='C',b='f', c='3';
int x;

5 x=a-'A';
printf("\nDistancia: %d",x);
printf("\nValor numérico: %d", c-'0'); /* 51-48 */

8 a=a+('a'-'A'); /* +32 pasa a minúsculas*/
b=b-32; /* Pasa a mayúsculas */
printf("\n%c \t%c", a,b); /* resultado */

11 }

12 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Operadores matemáticos

Java heredó las mismas operaciones.

1 a=-b;
a=a+b;
a=c-b;

4 a=c*b;
a=c/b; Si son enteros, sólo da el cociente de la

división. Si uno de ellos (por lo menos) es real, da la
división con todos los decimales posibles

a=c%b; Sólo se puede usar con enteros, y da el resto de
la división entera

13 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Abreviaturas

a=a+1; -> a++; o también ++a; (Hay diferencia)
b=b-1; -> b--; o también --b; (Hay diferencia)

3 b = b + c; -> b += c;
b = b - c; -> b -= c;
b = b * c; -> b *= c;

6 b = b / c; -> b /= c;
/*********** ¡¡Cuidado!! ************/
c=3;

9 b=c+1; -> b tiene 4 y c tiene 3 (d=c+1; b=d;)
b=c++; -> b tiene 3 y c tiene 4 (d=c; c=c+1; b=d;)
b=++c; -> b tiene 4 y c tiene 4 (c=c+1; d=c; b=d;)

14 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Entrada/Salida

1 #include <stdio.h>
void main(){

int num;
4 char car, nombre[10]; /* Cadena de caracteres */

printf("Introduce un numero entero");
scanf("%d", &num); /* enteros */

7 printf(" la variable \"car\": ");
fflush(stdin); /* Vacía el búfer del teclado */
scanf("%c", &car); /* caracteres */

10 fflush(stdin);
printf("\nIntroduce un nombre");
scanf("%s", nombre); /* cadena */

13 printf("\n\nEl número es %d, \t y el ", num);
printf("carácter %c.\n", car);
printf("La cadena es %s", nombre);

16 }

15 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Operaciones lógicas con bits

#include <stdio.h>
2 main() {

char dato, mascara=0x01; /* mascara=1 */
int i, cont=0;

5 scanf("%c", &dato);
for (i=0; i<8; i++) {

printf("%d",((dato&mascara)!=0));
8 if((dato & mascara)!=0) cont++; /* and de bits */

mascara = mascara << 1; /* Desplazamiento de */
} /* bits a la izq */

11 printf("\nEn '%c' hay %d unos\n", dato,cont);
}

14 & and >> Desplazamiento a la derecha
| or << Desplazamiento a la izquierda
~ not Lo mismo con iguales &= |= ^=

17 ^ xor <<= >>=

16 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

17 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Condicionales

1 if (b == 0) {
a=1;

}
4 else {

a=2;
}

7 /* Equivalente pero cuesta leerlo */
a = (b==0 ? 1 : 2);

18 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Operaciones condicionales

1 < menor que
<= menor o igual que
== igual (dos iguales)

4 != distinto de
> mayor que
>= mayor o igual que

7 || uno u otro, o los dos (or lógico)
&& uno y otro (and lógico)
!(expresión) no es cierto, no ocurre ese algo (not lógico

)

19 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Ejemplo de condicionales: if

/* i f anidados adecuados para switch .C */
#include <stdio .h>

3 int nota;
void main() {

printf("Dame tu nota ") ;
6 scanf("%d" , ¬a) ;

if(nota==0||nota==1||nota==2|| nota==3 | |nota==4) {
printf("\nLo siento, has suspendido \n") ;

9 printf("Si intentas otra, apruebas\n\n") ;
}
else if (nota==5 | | nota==6)

12 printf("\nUn aprobado \n") ;
else if (nota==7 | | nota==8)

printf("\nUn notable, muy bien \n") ;
15 else if (nota==9)

printf("\nSobresaliente \n") ;
else if (nota==10) printf("\nFelicidades, un 10 \n") ;

18 else if (nota==11) {
printf("\n Menos lobos... \n") ;
printf("\n¿Qué nota es ésa? \n") ;

21 } else printf("\n¿Qué nota es ésa? \n") ;
getch() ; /* para el programa hasta pulsar una tecla */

}

20 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Ejemplo de condicionales: switch

1 #include <stdio .h>
int nota;
void main(){

4 printf("Dame tu nota ") ; scanf("%d" , ¬a) ;
switch(nota){
case 0: case 1: case 2: case 3:case 4:

7 printf("\nLo siento, has suspendido \n") ;
printf("Si intentas otra vez, apruebas\n\n") ;

break;
10 case 5:case 6: printf("\nUn aprobado \n") ; break;

case 7:
case 8:

13 printf("\nUn notable, muy bien \n") ;
break;
case 10:

16 printf("\nFelicidades, un 10 \n") ;
case 9: printf("\nSobresaliente \n") ; break;
case 11:

19 printf("\n Menos lobos... \n") ;
default:

printf("\n¿Qué nota es ésa? \n") ;
22 } /* f in switch */

getch() ; /* para el programa hasta pulsar tecla */
}

21 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Ejemplo de iterativas

#include <stdio.h>
void main() {

3 char sn;
int n=10;
do {

6 printf("\n¿seguimos?(S/N)");
fflush(stdin);
scanf("%c", &sn);

9 } while (sn=='s' || sn=='S');

while (n>0) {
12 printf("\t%d,",n);

n--;
}

15 printf("\t%d.",n);
}

22 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Ejemplo de iterativas: for

for (cont=1; cont<=10; cont=cont+1)
2 printf("\n¡Hola!");
// Para imprimir los múltiplos de 7 menores de 500:
for (cont=7; cont<500; cont=cont+7)

5 printf("\n%d",cont);
// Y si queremos una cuenta atrás:
for (cont=10; cont>0; cont=cont-1)

8 printf("\n%d",cont);
// O también:
for (cont=10; cont>0; cont--)

11 printf("\n%d",cont);
// O también:
cont=10;

14 while (cont>0)
printf("\n%d",cont--);

El factorial en una línea (digamos que es ilegible):

for(i=1,f=1; i<=x; f*=i, i++);
for(i=f=1; i<=x; f*=i++);

23 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

24 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Tablas, arrays, vectores, matrices, arreglos

1 #include <stdio.h>
#define N 10
main() {

4 int i, v[N], aux;
for (i=0; i<N; i++) {

printf("\nDame el %dº valor: ",i+1);
7 scanf("%d", &v[i]);

}
aux=v[0];

10 for (i=0; i<N-1; i++)
v[i]=v[i+1];

v[N-1]=aux;
13 printf("\nDesplazada a la izquierda: \n");

for (i=0; i<N; i++) printf("\t%d ", v[i]);
}

25 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

26 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Cadenas o strings

En C, una cadena de caracteres es una tabla de
caracteres ASCII (un byte) terminada en un byte con cero
binario (ASCII 0 o ’0\0’)

char cad[40];
cad[0] = 'h';

3 cad[1] = 'o';
cad[2] = 'l';
cad[3] = 'a';

6 cad[4] = '\0'; /* cad[4] = 0; */

char cad[40]= {'H','o','l','a','\0'};
9 char cad[40]= "Hola";

En el resto de posiciones hay valores indeterminados, lo
que contenía la memoria antes de reservar ese trozo
(probablemente ceros, ya que hay memoria de sobra).

27 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

28 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Subprogramas

#include <stdio.h>
long fact(int n); /* declaración */

3 main() {
printf("\nEl factorial de 14 es %ld", fact(14));

}
6 long fact(int n) { /* definición */

long r=1l; /* constante 1 de tipo long */
int i;

9 for (i=1; i<=n; i++)
r*= (long) i; /* conversión o cast opcional de int a

long */
return r;

12 }

La función devuelve un long a partir del dato de entrada
int

29 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Funciones y Booleanos

Los booleanos son enteros. Cualquier valor distinto de
cero es verdadero.

#include <stdio.h>
#define VERD 1

3 #define FALSO 0

int es_negativo(int x) {
6 if (x<0)

return VERD;
else

9 return FALSO;
}

12 main() {
if (es_negativo(5))

printf("5 es negativo");
15 }

30 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Procedimientos

#include <stdio.h>
#define N 10

3 void pedir_tabla(int t[]) {
int i;
for (i=0; i<N; i++)

6 scanf("%d", &t[i]);
}

9 void mostrar_tabla(int t[]) {
int i;
for (i=0; i<N; i++) printf("\t%d ", t[i]);

12 }

main() {
15 int v[N];

pedir_tabla(v);
mostrar_tabla(v);

18 }

31 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Manejo de ficheros

E/S estándar

printf("formato", lista de expresiones);
scanf ("formato", lista de expresiones);

E/S no estándar

1 fprintf(fich, "formato", lista de expresiones);
fscanf (fich, "formato", lista de expresiones);

Conversión en memoria

1 sprintf(cadena, "formato", lista de expresiones);

32 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Manejo de ficheros

Cifrado César (siguiente carácter)

#include <stdio.h>
2 #define EOF (-1)
void main() {

FILE *entrada, *salida;
5 int i;

char ce, cs;
entrada= fopen("entrada.txt","r");

8 salida = fopen("salida.txt","w");
while((ce=getc(entrada))!=EOF) {

cs = ce+1;
11 putc(cs,salida);

}
}

33 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Manejo de ficheros

Argumentos del

programa

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Argumentos del programa

#include <stdio.h>
2 void main(int argc, char *argv[]) {

int i;
printf("\nPrograma: %s\n",argv[0]);

5 for(i=1;i<argc;i++)
printf("argumento %d: %s\n",i,argv[i]);

}

34 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

35 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Basado en...

Basado en: A TUTORIAL ON POINTERS AND ARRAYS IN C

by Ted Jensen

http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

36 / 58

http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Punteros

Los punteros o apuntadores (pointers) son variables que
contienen una posición de memoria, normalmente de
otra variable de un tipo de datos determinado.

int k,j;
2 k=2; j=7;

int *ptr; /* p es un puntero a enteros */
5 // Es decir, contiene una dirección de memoria, y el

lenguaje sólo permite que apunte a enteros
ptr=NULL;
ptr=&k; /* ptr contiene la dirección de memoria de k */

8 j=*ptr; /* j recibe lo apuntado por ptr, un entero con el
valor 2 */

ptr=7; / en ese entero se introduce el 7 */

11 printf("j %d @ %p\n", j, (void *)&j);
printf("k %d @ %p\n", k, (void *)&k);
printf("ptr %p @ %p\n", ptr, (void*)&ptr);

14 printf(" Apuntado por ptr es %d\n", *ptr);

37 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Bytes de un entero con punteros

Orden de los bytes de un entero:

1 #include <stdio.h>
int main() {

int n=0x05060708; // en hexadecimal, 4 bytes
4 char *p;

p = (char *) &n; /* &n apunta a un entero y se
convierte a ptr a carácter*/

for (int b=0;b<4;b++) {
7 printf("\nbyte %d \t%p\n", *p, p);

p++; // se suma 1 porque es un puntero a char
}

10 /* lel mismo for en dos líneas */
for (int b=0;b<4;b++)

printf("\nbyte %d \t%p\n", *p, p++);
13 return 0;

}

1 1942 vi p.c
1943 gcc -o p p.c
1944 ./p

38 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Variables por valor y por referencia

Las variables simples, si no se usan punteros, se pasan
por valor:

int suma (int a, int b) return a+b;
s= suma(c,d);

Las variables compuestas siempre se pasan por
referencia por ser su nombre un puntero al primer
elemento:

1 void desplaza (int a[]);
int t1[10];
desplaza(t1);

39 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Variables por valor y por referencia (2)

Para pasar por referencia las variables simples hay que
usar punteros:

void intercambia (int * a, int * b) {
int x;

3 x=*a;

*a=*b;

*b=x;
6 }

// Y en el programa principal:
9

int c,d;
intercambia(&c, &d);

40 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Variables por valor y por referencia (3)

Una función puede devolver un puntero, que es un dato
simple. Hay que tener en cuenta que si se crea una
cadena dentro de la función se reserva en la pila, y al
salir de la función se puede perder.

1 #include <stdio.h>
char * pidecadena (char * cad) {

scanf("%s",cad);
4 return cad;
}
void main(){

7 char c[10];
printf("\nDime una cadena: ");
printf("Me has dado: \"%s\"\n", pidecadena(c));

10 }

41 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Core

Core es un volcado de memoria (core dump) cuando un
programa por ejemplo accede a memoria que no es suya.

En Unix se escribe un fichero core con el contenido de la
memoria del programa para depurar. En Windows se
escribe un fichero de extensión .dmp

42 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

43 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Punteros y tablas (arrays)

Puntero para recorrer una tabla

int tabla[] = {1,23,17,4,-5,100};
2 int *ptr;
int i;
ptr = &tabla[0]; /*1*/

5 ptr = tabla; /*2*/
printf("\n\n");
for (i = 0; i < 6; i++) {

8 /*A*/ printf("tabla[%d] = %d",i,tabla[i]);
/*B*/ printf("ptr + %d = %d\n",i, *(ptr + i)); //

tabla+i
}

44 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

Dos formas de llenar un array

Llenamos un array reservado en el montículo en el puntero p
accediendo por el nombre del array p dándole el valor de la
posición más 10, y con un puntero q que al incrementarse con
q++ se le añade 4 por ser puntero a entero. Con q se le da
x+20.

#include <stdio.h>
2 #include <stdlib.h> // man malloc nos dice su librería
int main() {

int *p, *q;
5 p=malloc(10*sizeof(int));

q=p;
for (int x=0;x<10;x++) {

8 p[x]= (x+10);
printf("#%d: %d \t%d \n", x, p[x], *q);

*q = (x+20);
11 printf("#%d: %d \t%d \n", x, p[x], *q);

printf("%p %p\n", &p[x], q++);
}

14 return 0;
}

45 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

46 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Estructuras

struct ficha {
char ap[20];

3 char nom[20];
int edad;
float altura;

6 };
struct ficha yo; // reserva los 48 bytes
// es una variable global

9

int main(void) {
strcpy(yo.ap,"G.N.");

12 strcpy(yo.nom,"P.");
printf("\n%s, ",yo.ap);
printf("%s\n",yo.nom);

15 return 0;
}

47 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Estructuras y punteros

struct ficha *p;
2 p = &yo; // no reserva, ya tenemos la del código anterior
(*p).altura = 1.85;
p->altura = 1.85; // sintaxis más clara

5

void imprime(struct ficha *p)
{

8 printf("\n%s, ", p->ap);
printf("%s ", p->nom);
printf("%d\n", p->altura);

11 }

48 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Estructuras y malloc

En este caso sí que reservamos memoria para una ficha
en el montículo (heap), averiguando su tamaño con
sizeof y convirtiendo el tipo del puntero devuelto por
malloc para poder hacer la asignación.

1 struct ficha *p;
p = (struct ficha *) malloc(sizeof(struct ficha));

49 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Usando typedef con estructuras y malloc

Simplificamos si definimos un tipo usando typedef:

1 typedef struct {
char ap[20];
char nom[20];

4 int edad;
float altura;

} Ficha;
7 Ficha *p;
p = (Ficha *) malloc(sizeof(Ficha));

50 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Uso alternativo de typedef con estructuras

y malloc

Creamos un tipo de datos que es puntero a ficha, y
reservamos o ubicamos memoria con malloc

1 struct {
char ap[20];
char nom[20];

4 int edad;
float altura;

} ficha;
7

// FICHA es un tipo de datos "puntero a la estructura ficha
"

typedef struct ficha *FICHA;
10

FICHA p; // p es un puntero a estructura

13 p = malloc(sizeof(*FICHA));

51 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Tablas de estructuras

Con lo anterior podemos crear un vector de 10 punteros
a ficha y crear para cada uno una ficha.

#define TAMTABLA 10
2 FICHA *t; // struct ficha **t;
t = malloc(sizeof(FICHA)*TAMTABLA);
for (i=0; i<TAMTABLA; i++) {

5 t[i]=malloc(sizeof(*FICHA));
llenaficha(t[i]);

}

52 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Punteros a funciones

Punteros a funciones

Creamos cuatro funciones:

#include <stdio.h>
2

void f1() {
printf("a\n");

5 }
void f2() {

printf("b\n");
8 }
void f3() {

printf("c\n");
11 }

void f4() {
printf("d\n");

14 }

Podríamos ejecutar una escribiendo (*f1) () que es lo
mismo que f1()

53 / 58

http://www.barrgroup.com/Embedded-Systems/How-To/C-Function-Pointers

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

Punteros a funciones

Y definimos un vector de punteros a código. El nombre de la
función es un puntero a la posición de memoria donde
empieza el código (binario, lenguaje máquina) de la función.

1 int main() {
// tabla de punteros a 4 funciones
void (*t[4]) (void);

4 int i;
t[0]=f1;
t[1]=f2;

7 t[2]=f3;
t[3]=f4;

10 // def alternativa de la tabla
// void (*t[])(void) = {f1, f2, f3, f4};

13 for (i=0; i<=3; i++)
(*t[i]) (); // ejecutamos las funciones

}

54 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

Estructuras

Estructuras y punteros

Estructuras y malloc

Tablas de estructuras

Punteros a funciones

∞

¿Más
preguntas?

∞

Ciclo infinito:

#define TRUE 1
while(1)

3 while(TRUE)
for(;;)

De un programa que ejecuta un bucle infinito (un
demonio por ejemplo) se puede salir cuando el programa
ejecute la llamada al sistema exit(n) que devuelve el
valor n al programa que lo arrancó, normalmente el SO.

También puede terminar si recibe una señal que le mate.

55 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

¿Más preguntas?

1 ¿Por qué C?

2 Parte básica de la sintaxis de C

3 Control de flujo

4 Matrices

5 Cadenas

6 Subprogramas

7 Qué es un puntero

8 Punteros y tablas

9 Punteros y estructuras

10 ¿Más preguntas?

56 / 58

Contenidos

¿Por qué C?

Sintaxis básica

Control de flujo

Matrices

Cadenas

Subprogramas

Qué es un
puntero

Punteros y
tablas

Punteros y
estructuras

¿Más
preguntas?

¿Más preguntas?

¿Más preguntas?

¿Más preguntas?

57 / 58

Actividad 1

C para SO
Introducción a los Sistemas Operativos,

2025-2026

Pablo González Nalda

Depto. de Lenguajes y Sistemas Informáticos
EU de Ingeniería de Vitoria-Gasteiz,

UPV/EHU

26 de enero de 2026

https://lsi.vc.ehu.eus/
http://www.ehu.es/eui
https://www.ehu.eus/
http://creativecommons.org/licenses/by-sa/2.5/es/
http://creativecommons.org/licenses/by-sa/2.5/es/

	¿Por qué C?
	Parte básica de la sintaxis de C
	Control de flujo
	Matrices
	Cadenas
	Cadenas

	Subprogramas
	Manejo de ficheros
	Argumentos del programa

	Qué es un puntero
	Punteros y tablas
	Punteros y estructuras
	Estructuras
	Estructuras y punteros
	Estructuras y malloc
	Tablas de estructuras
	Punteros a funciones
	

	¿Más preguntas?
	¿Más preguntas?

