
The Definitive Guide
To Docker Containers

2

Executive Summary

We are in a new technology age – software is dramatically
changing. The era of off big packaged applications is shifting
to an era defined by vibrant open source projects and lots of
small, specialized applications. Driven first by the desire for a
more agile application development model, the ripple effect has
created a movement changing not only the technology but the
people and process that build it.

Docker has emerged as a key enabling technology for this
movement, from enabling DevOps methodologies to powering
some of the most innovative websites/companies/applications
in operation today. Popular amongst developers, Docker is
gaining in popularity beyond open source devotees to large
enterprises and even those beyond Linux.

This guide provides an introduction to the Docker technology,
containerization, ecosystem and the resulting shift from
monolithic to micro services architectures.

Intended for readers new to Docker, this paper will discuss the
following topics:

• Technology trends driving the change to distributed
applications

• Overview of the Docker technology
• Impact to the application delivery ecosystem
• Key use cases and benefits

Distributed Applications Call for Containers
Many enterprises are moving away from monolithic applications
to distributed applications. Fueled by a desire to innovate faster,
organizations are moving away from waterfall style development
practices traditionally linked to monolithic applications in favor
of distributed applications and DevOps methodologies. With
traditional applications, each additional line of code introduced
grew the QA cycles exponentially and ultimately slowed
innovation in favor of testing and bug fixing. The promise of
distributed applications is that a collection of micro services can
be developed and independently, frequently and freely.

What is a distributed or micro services application? They
fundamentally look and behave much differently than their
predecessors. Instead of having a single application server
containing an ever-expanding code base, that “application”
is now a collection of loosely coupled smaller applications
otherwise knows as “micro services”. Instead of being written
in a single language, each service can now be written in the
best language stack and version for the capability it is intended
to provide the end user. In an era of hybrid cloud, these services
want to be distributed – running wherever is optimal from a
performance and cost standpoint for that workload.

The idea behind micro services is that if one service fails, then
the whole application does not have to fail and the developer
can simply fix it, without affecting the other services that
make up the application. Modern websites like Gilt, LinkedIn,
Facebook and many others all use this type of architecture. Gilt,
an online flash sale retailer has an ecommerce site comprised of
roughly 400 applications. The code that serves up the pictures
on the product page and the search functionality are actually
separate applications. In the case of LinkedIn, if the “upload”
capability fails, the entire LinkedIN application doesn’t go down
with it. The user simply gets the mes
sage “LinkedIN Upload capability is temporarily unavailable”
instead of having the entire application freeze or crash.

This approach creates a new paradigm for building better
software but is not also raises new challenges. With hundreds
small applications connected together, new complexities
are introduced with multiplicity of language stacks, versions,
dependencies and hardware compatibility. Maintaining order
becomes a challenge as a new matrix headache emerges.

Enter Docker, a platform for packaging up the application and
all of its dependencies into a standardized unit of software – the
Docker container.

EXECUTIVE SUMMARY | THE DEFINITIVE GUIDE TO DOCKER CONTAINERS

Today

Loosely
Coupled
Services

Monolithic

Slow
Changing

Big Servers

Rapidly
Updated

Many Small
Servers

2000

Binaries

Libraries

System tools

Runtime

3

Docker Basics
Before we dive into how the different components of the Docker
technology, architecture and how they work, below are the core
terminology and their definitions.

Dockerfile: This tells the image builder (i.e Jenkins) what the
image should look like.

Image: The basis of a Docker container at rest. These artifacts
are stored and managed in a registry. Once instantiated via a
Docker run command a container is created.

Container: The standard unit in which the application service
resides. At run, the image is turned into a container.

Docker Engine: Installed on physical, virtual or cloud hosts,
this lightweight runtime is what pulls images, creates and runs
containers.

Registry: A service where Docker images are stored, managed
and distributed.

Understanding Docker Containers
A Docker container wraps up a piece of software in a complete
filesystem that contains everything it needs to run: code,
runtime, system tools, system libraries – anything you can install
on a server. By encapsulating and isolating everything in a
container, this guarantees that the container will always run the
same, regardless of the environment it is running in.

Docker containers are built from Docker images, which use
union filesystems and share image layers which further attribute
to their lightweight nature.

Containers are created from an image with the “docker run”
command. Once initiated, the Docker Engine spins up that
container from the defined image (it can also spin them down).
Every command is executed to the Docker Engine including
creating new containers, scaling existing containers, stopping,
removing and much more.

Docker containers make distributed applications:

Composable: Lightweight containers start instantly and
use minimal resources because they share the kernel of the
underlying operating system

Dynamic: Quick to spin up and easy to scale and change make
containers ideal for agile teams

Portable: Able to run on any physical, virtual or cloud
environment running Docker.

Containers can uniquely turn very diverse set of application
services into standardized software units. From the outside the
containers all look the same which regardless of the binaries,
libraries and code inside the container. This makes it easy
to build tooling around container to move them along every
stage of the application lifecycle. You can create simple single
container or complex multi-container applications.

EXECUTIVE SUMMARY | THE DEFINITIVE GUIDE TO DOCKER CONTAINERS

App 1

Docker Engine

Infrastructure

Operating System

Bins/Libs Bins/Libs Bins/Libs

App 2 App 3

References
Parent Image

References
Parent Image

Kernel

bootfs
Debian Base Image

Add Emacs Image

Add Apache Image

Writable Container

Kernel

bootfs

Debian Base Image
Add Emacs Image
Add Apache Image
Writable Container

4

What about virtual machines?
But wait, what about virtual machines (VMs)? For years virtual
machines were seen as the status quo for packaging and
running applications. Containers and VMs seem similar, but
containers utilize a different architectural approach. VMs require
a full operating system (OS) inside of each VM in order to run
the service inside of it. This allows for many OS’s to run on the
same physical server, which is beneficial for some use cases.
On the other hand, containers share the OS kernel on the host
thus being able to achieve higher levels of density per host but
require the same OS.

VMs and containers are designed for different types of
applications but are complimentary and have a natural
intersection. Virtual machines are popular places to deploy and
run Docker containers. Docker is able to run on physical and
cloud infrastructure while uniquely provides portability for your
applications across those environments. Additionally a single
physical server could host a number of virtual machines with
different OS’s and each running their respective containers.

Docker Tooling and the Ecosystem
The beauty of containers is that they are a standard, lightweight,
and extremely portable – to run in any environment on any
infrastructure with sub second boot up times. Combined with
open APIs and a pluggable architecture, Docker’s unique
characteristics have spawned a vibrant and vast ecosystem
across the application delivery lifecycle.

Docker APIs are critical to a seamless Docker experience.
As the Docker platform has grown beyond running a single
container on a single Engine – the capabilities have expanded to
automated provisioning (Machine), host clustering and container
scheduling (Swarm), multi-container applications (Compose),
image registries (Hub and Trusted Registry), security,
networking, volumes to products that deploy and manage the
Docker application environment (Universal Control Plane, Tutum)
to complete the application lifecycle. These APIs enable the
ecosystem to build value added tooling and services into the
Docker platform.

Pluggable architecture uniquely gives the ability to maintain the
Docker user experience with the flexibility to change out the
underlying provider for technologies like; networking, storage,
clustering, service discovery. Docker supports and maintains
the plugin to the Docker Engine and third party providers build

to the plugin API. This allows the same Docker commands to
execute actions against a cluster, network or volume and the
plugin translates the actions to the underlying provider.

Docker containers introduce an “application first” architecture,
allowing teams to focus their time on building and shipping
code through standardized units to package their software.
Docker abstracts away the underlying infrastructure and
compute, thus removing away the issues of “works on my
machine” which plagues many software engineering, QA and
IT Ops teams. This model also allows developers to granularly
define requirements for their application at the container level
like networking, volumes, resources, and more. Developers can
develop, test and deploy applications, while IT Ops teams can
provision, manage and secure infrastructure and applications
across any environment.

Docker Use Cases
Today, the use of Docker tools within the enterprise has
flourished. And of the enterprises using Docker tools, 40% are
running Docker containers within their production environments,
solidifying the tool as not just an awesome tool developing
applications and making it easy to test them, but also for
managing and deploying dockerized distributed applications
in production. Teams have pulled over 1.3 billion images
(and counting) from Docker Hub alone, using them as the
basis for building their applications. Docker gives enterprises
the agility, portability and control that their developers and
operations teams require. Developers can create applications
quickly, define the needs of each container, and can easily
move containers from development and test environments. IT
operations teams can keep up with the changes in business
needs, and also control, manage and secure their environments,
allowing them to meet the SLAs their customers expect. Here
are a few use cases for Docker containers within the enterprise.

Continuous Integration/Continuous Delivery
ING, one of the top 10 largest financial firms in
the world, was struggling with their container
deployment process. Prior to using the containers

it took up to 9 months for their applications to get deployed.
Today, using the Docker platform, they are able deploy 1,500
times per week.

“Speed is very important to us and Continuous Delivery is
how we do it.” Says Kolk, “In ING IT, we are all developers
and we want to be better - meaning better code and more
customer satisfaction and Docker is the part of our strategy
to do all of this, especially faster.”

– Henk Kolk, Chief Architect of ING Netherlands

App 1

Infrastructure

Hypervisor

Bins/Libs

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs

App 2 App 3

5

Infrastructure Optimization and Responsiveness
Gilt Groupe, the online flash sale fashion vendor,
was using monolithics applications within their
environment. They needed to keep up with the

massive demand from their 6 million customers They took a very
interesting approach in that they didn’t do a dramatic shift to
distributed apps. What they instead did was containerize each
of the 7 monolithic applications they had. They then managed
these containers, and made updates to them as needed.

“I love Docker. It’s simple for developers and it works for ops.
There is a really positive emotional connection that Docker
has created with our developer community.”

- Gilt Groupe

Containers-As-A-Service
Booz Allen in partnership with the GSA, the largest
federal buying organization, used Docker to
transform their monolithic applications to in an agile

DevOps environment, using a containers as a service (CaaS)
methodology. Making the government’s testing more agile.

At Docker our mission is to help you build, ship and run
distributed applications anywhere. Containerizing your
applications and moving to micro services is just one piece of
that journey. The power of the Docker platform is to deliver a
secure and managed application environment that gives you
speed and freedom in application development and delivery.

For more information take a look at the following resources:
• Learn more about Docker www.docker.com/enterprise
• Docker Self-paced Training: https://training.docker.com/self-

paced-training
• Contact our sales team: www.docker.com/contact

www.docker.com

