
Syscalls are the interface between user programs and the Linux kernel. They are used to let the kernel perform various
system tasks, such as file access, process management and networking. In the C programming language, you would
normally call a wrapper function which executes all required steps or even use high-level features such as the standard
IO library.

On Linux, there are several ways to make a syscall. This page will focus on making syscalls by calling a software
interrupt using int $0x80 or syscall . This is an easy and intuitive method of making syscalls in assembly-only
programs.

For making a syscall using an interrupt, you have to pass all required information to the kernel by copying them into
general purpose registers.

Each syscall has a fixed number (note: the numbers differ between int $0x80 and syscall !). You specify the
syscall by writing the number into the eax / rax register.

Most syscalls take parameters to perform their task. Those parameters are passed by writing them in the appropriate
registers before making the actual call. Each parameter index has a specific register. See the tables in the subsections
as the mapping differs between int $0x80 and syscall . Parameters are passed in the order they appear in
the function signature of the corresponding C wrapper function. You may find syscall functions and their signatures in
every Linux API documentation, like the reference manual (type man 2 open to see the signature of the open

syscall).

After everything is set up correctly, you call the interrupt using int $0x80 or syscall and the kernel performs
the task.

The return / error value of a syscall is written to eax / rax .

The kernel uses its own stack to perform the actions. The user stack is not touched in any way.

int 0x80

On both Linux x86 and Linux x86_64 systems you can make a syscall by calling interrupt 0x80 using the int

$0x80 command. Parameters are passed by setting the general purpose registers as following:

Syscall # Param 1 Param 2 Param 3 Param 4 Param 5 Param 6

eax ebx ecx edx esi edi ebp

Return value

eax

The syscall numbers are described in the Linux generated file $build/arch/x86/include/generated

/uapi/asm/unistd_32.h or $build/usr/include/asm/unistd_32.h . The latter could also be present on
your Linux system, just omit the $build .

All registers are preserved during the syscall.

syscall

Syscalls

Making a syscall

X86 Assembly/Interfacing with Linux - Wikibooks,... https://en.m.wikibooks.org/wiki/X86_Assembly/Int...

1 de 4 12/3/19 15:08

The x86_64 architecture introduced a dedicated instruction to make a syscall. It does not access the interrupt descriptor
table and is faster. Parameters are passed by setting the general purpose registers as following:

Syscall # Param 1 Param 2 Param 3 Param 4 Param 5 Param 6

rax rdi rsi rdx r10 r8 r9

Return value

rax

The syscall numbers are described in the Linux generated file $build/usr/include/asm/unistd_64.h . This
file could also be present on your Linux system, just omit the $build .

All registers, except rcx and r11 (and the return value, rax), are preserved during the syscall.

library call

In call of Linux's library functions parameter 4 is passed on RCX and further parameters, onto the stack.

Param 1 Param 2 Param 3 Param 4 Param 5 Param 6

rdi rsi rdx rcx r8 r9

To summarize and clarify the information, let's have a look at a very simple example: the hello world program. It will
write the text "Hello World" to stdout using the write syscall and quit the program using the _exit syscall.

Syscall signatures:

ssize_t write(int fd, const void *buf, size_t count);

void _exit(int status);

This is the C program which is implemented in assembly below:

#include <unistd.h>

int main(int argc, char *argv[])

{

write(1, "Hello World\n", 12); /* write "Hello World" to stdout */

_exit(0); /* exit with error code 0 (no error) */

}

Both examples start alike: a string stored in the data segment and _start as a global symbol.

.data

msg: .ascii "Hello World\n"

.text

.global _start

Examples

X86 Assembly/Interfacing with Linux - Wikibooks,... https://en.m.wikibooks.org/wiki/X86_Assembly/Int...

2 de 4 12/3/19 15:08

int 0x80

As defined in $build/usr/include/asm/unistd_32.h , the syscall numbers for write and _exit are:

#define __NR_exit 1

#define __NR_write 4

The parameters are passed exactly as one would in a C program, using the correct registers. After everything is set up,
the syscall is made using int $0x80 .

_start:

movl $4, %eax ; use the write syscall

movl $1, %ebx ; write to stdout

movl $msg, %ecx ; use string "Hello World"

movl $12, %edx ; write 12 characters

int $0x80 ; make syscall

movl $1, %eax ; use the _exit syscall

movl $0, %ebx ; error code 0

int $0x80 ; make syscall

syscall

In $build/usr/include/asm/unistd_64.h , the syscall numbers are defined as following:

#define __NR_write 1

#define __NR_exit 60

Parameters are passed just like in the int $0x80 example, except that the order of the registers is different. The
syscall is made using syscall .

_start:

movq $1, %rax ; use the write syscall

movq $1, %rdi ; write to stdout

movq $msg, %rsi ; use string "Hello World"

movq $12, %rdx ; write 12 characters

syscall ; make syscall

movq $60, %rax ; use the _exit syscall

movq $0, %rdi ; error code 0

syscall ; make syscall

library call

Here is the C Prototype of an example library function.

Window XCreateWindow(display, parent, x, y, width, height, border_width, depth,

 class, visual, valuemask, attributes)

X86 Assembly/Interfacing with Linux - Wikibooks,... https://en.m.wikibooks.org/wiki/X86_Assembly/Int...

3 de 4 12/3/19 15:08

Parameters are passed just like in the int $0x80 example, except that the order of the registers is different.

Library function is declared at the beginning of the source file (and the path to the library, at compilation-linking time).

extern XCreateWindow

mov rdi, [xserver_pdisplay]

mov rsi, [xwin_parent]

mov rdx, [xwin_x]

mov rcx, [xwin_y]

mov r8, [xwin_width]

mov r9, [xwin_height]

mov rax, attributes

push rax ; ARG 12

sub rax, rax

mov eax, [xwin_valuemask]

push rax ; ARG 11

mov rax, [xwin_visual]

push rax ; ARG 10

mov rax, [xwin_class]

push rax ; ARG 9

mov rax, [xwin_depth]

push rax ; ARG 8

mov rax, [xwin_border_width]

push rax ; ARG 7

call XCreateWindow

mov [xwin_window], rax

Note the last parameters of function, pushed into the stack, is done in reverse order.

Last edited 8 months ago by an anonymous user

X86 Assembly/Interfacing with Linux - Wikibooks,... https://en.m.wikibooks.org/wiki/X86_Assembly/Int...

4 de 4 12/3/19 15:08

