Eckart Modrow

Computer Science
with / Snap!

— Snap! by Examples -

Snap! Build Your Own 81 5) A Snap! Buid Your Own B X e - X

C | @ files//c 2 4.1.2.1 html | i

- %% Drip Painting mit Beispielen

[(set costme. [t pen traits

nox @y @

o] e 1 e s (3
@

Make 2 blook

[orip painting mit .aml A

© Eckart Modrow 2018
emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike
4.0 International License. It allows download and redistribution of the complete work with
mention of my name, but no editing or commercial use. In addition to the book, the com-
plete listings of the described programs are loadable from the following address:

http://emu-online.de/projectsOfCSwithSnap.zip

The scripts are developed with Snap! 4.1.2.1 Build Your Own Blocks.

Prof. Dr. Modrow, Eckart:
Computer Science with Snap!
- Snap! by Examples -
© emu-online Scheden 2018

All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a
donation, you can do so at the following PayPal account:

emodrow@emu-online.de
Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases
requires the prior written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies
are generally subject to the protection of goods, trademarks and patents. The product names used are pro-
tected by trademark law for the respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability
of the given sample source texts in this book. I assume no liability or legal responsibility for any damages
resulting from the use of the source texts of this book or other incorrect information.

Preface 3

Preface

This book, similar to its predecessor "Informatik mit BYOB"?, uses a collection of program-
ming examples to explore the scope of the graphical language Snap!. It does not replace
a textbook that conveys CS content but shows how to use Snap! to apply CS methods.

After Scratch and BYOB, Snap! in the current version 4.1.2 is the next step in the devel-
opment of graphical tools. The system overcomes several limitations that existed with its
predecessors, so it overcomes many arguments against graphical languages. The current
version is expanded by numerous extensions in the field of object-oriented programming
(OOP). It can meet and exceed all requirements up to high school and beyond. Since drastic
improvements have been achieved at the execution speed and availability of libraries in
different fields like pixel access, audio or use of external resources, there is hardly any re-
striction in applications. Particularly noteworthy in this area is the possibility to use Java-
Script functions, e.g. for time-critical operations or extensions within Snap!. The libraries
contain numerous JavaScript-examples.

The selection of problems in the following chapters is relatively conservative, partly based
on existing computer science lessons, but it goes beyond that. That's intended. | hope, on
the one hand, to "pick up" the teaching colleagues from the traditional lessons, and on the
other hand, to provide contexts that brings sense from the perspective of a learner to the
information to be acquired. In this way, teaching should be very much based on creativity,
but also on CS concepts. The examples describe in detail the handling of Snap! in different
aspects. After an introductory chapter that gives a fast overview about Snap!, the first few
chapters explain the features of the language, followed by sections without direct applica-
tion reference. This compromise is due to space requirements, because advanced concepts
require extended problems. The examples are not hierarchically ordered, also in the sec-
ond part are rather simple ones. At the end of the book there are summaries of the meth-
ods used in the examples and an index.

This book is a translation from German. Unfortunately, | do not speak English well, so it will
be bumpy. | apologize for that. But all programs have to be changed, hardly anyone else
can do this work. Be strong and hold it! Many thanks for the wonderful help of the Deepl?
translation program. | would probably never have finished without these.

I would like to thank Jens M&nig for his support - and for the results of his work. The learn-
ers will be thankful!

| wish you a lot of fun working with Snap!.

Gottingen, am 1.4.2018

A /&L

L E. Modrow, Informatik mit BYOB, http://ddi-mod.uni-goettingen.de/Informatik%20mit%20BYOB. pdf
2 https://www.deepl.com/translator

Content 4

Content
PrEACE ettt ettt a e ettt bbbt s 3
CONEENT <. et s sttt st st e r et e ereere s renee 4
1 CSand Media STUIEScooeuiriiriireee ettt ettt et et e e b e e s e ee s 7
B AN o To TU | Y o= 1 OO 9
2.1 Block Oriented LANGUAEZESccceveeeveereceeeieeetestsertetee e e et e e ste st stestesresnnennens 9
2.2 Object Oriented LANGUAEESccoeeeerversesiesie e e e esressessseesssesaes et e e s sae e sreene 9
2.3 Inheritance by Delegationc.ec ettt 10
2.4 WAt iS SNAP!? oottt et st et e a et et sttt s aeranens 11
2.5 What is SNAP!I NOL? oottt s et et st st s aenaerens 12
2.6 ThE SNAP!I-SCIEEN ..ottt sttt st st et s e s te e sessensanens 13
2.7 An Example for Experienced USers: FIUccoveviveeineireceeee e 14
2.7.1 Writing Your OWN Methodsccccoeieeecenetince et se s 15
2.7.2 Elementary Algorithmic and Variablescccccoeeeeveieeceececceceereeeeeeeee 16
2.7.3 Creating ObJECES ...uuviiieeee ettt 17
2.7.4 Communicating With ODJECLSccccevveee e 18
2.7.5 Drawing @ Diagram ..o ceiiiiiiese et se e s e sae e ss e sae e ea e 21
3 SIMPIE EXAMPIES c.vveviieeiiiietieee et stesteste e eeeeetsse s et st s e s e e e et e saeste s sane s ntentesteeee 23
3.1 SWIMIMING ceirtiiitiiitirirtieiet et ettt stesbesbesbesas et et e s et et aesess sestesbenstantassesnanes 23
2.2 SOIAr SYSTEIM ..ottt ettt sttt e e ste st s tes b et e e eaesreetesannteraeranrens 25
2.3 CaeSar ENCIYPLION .o..uiiiiicire sttt et bbb e s e e e 27
2.4 TASKS ettt sttt sttt sttt e st b e et sttt ettt et et eae s aeae e eae et 29
4 Simulation of @ SPring Pendulum ..ot st 30
4.1 Organization of COOPErationccoirrerirtiienireereee st st e 30
B.2 THE CIOCK w.everveiieeeeeeriet ettt et ettt st ee e st et s s e s e ene seanes 32
4.3 ThE EXCITOI cueeiiie sttt sttt sttt et e st e s b e e st en s sesaenens 32
A4 The TRIEAM ..ottt ettt st st es e s s e sben e eae e 33
A5 ThE Ball ottt s s e e e e s e ene e 33
A6 THE PN ..ottt e st s s b she e s s bes e ne s 34
4.7 Why is it @ SIMUIGLIONT ceeeeeeeecceee et et se e 34
5 Troubleshooting With SNap! ..ottt 35
6 Lists and Related StrUCLUIESooci ittt e s 37
6.1 SEIECHION SOMT ... ettt sttt e st b e e s 37
6.2 QUICKSOIT ...ttt ettt st sttt bbb bbb 39
6.3 Routing with Dijkstra Methodcccceceeoireieceeceeeere e 40
6.4 Matrices and FOR-LOOPScccecvvrvererireieierinreeereetestessetesaesassesssssssessessessnsessssassens 44
6.5 TASKS ettt et s s e 46
7 Object-Oriented Programmingcccoieireeierentereineeseries et steeeresetes st s essseese seees 47
7.1 Anne and the Filing CabiNetsc.covvvrieeireinrece et s 48
2 |V - = 1= PRSP RSR 52

7.3 A Learning RODOLooiiiiceieeeee ettt st st s s es s e e e nnan 53

Content 5
7.4 A Digital SIMUIGLON ...t sttt et 57
7.4.1 Sockets and CONNECLIONSccceuereeuereiriee ettt e e e 58

742 SWITCNES ..ottt ettt et st et s s 59

743 GAES oo e e e e e e 60

T AL TREPEN oottt et et st e et bt 60

TA5 LEDS ..ttt ettt st sttt sttt s ea e st n ettt 61

7.4.6 The Interaction oft the Componentsccccvveveeeieccerescecniseece e 61

T AT TASKS ettt ettt e et et e bt bbb et e 62

T € =Y o] Y (oL TR TP 63
8.1 LiNE GraphiCs ceevieiceieeceetirteeee e sttt sttt et ettt st st e es s e eneene 63
8.2 Pixel Graphics and RGB MOAElcccooeeeeeeececececece et e 66
8.2.1 Pixel Graphics with the Pixels Librarycccccceeceveee e 66

8.2.2 Pixel Graphics with an own Libraryccccceveeeevieivieceeeeecveneenen 68

8.3 The Light of the 0ld SEars ...ttt st e 70
8.4 A SIMPIE RGB COlOr IMIIXEN ..ocuveeveeerieeietieieeiees e eeee e st e stestestesae svesessessaesaensennan 71

8.5 DriP PAINTING cveeeeceeee ettt sttt ettt e ste e e sbe s e e et snreennes 72
8.6 EdZE DELECLION ...ttt sttt st e e et e st e enan 74
8.7 TASKS ettt ettt et e b e sae s et bbb st b e she et 76

9 IMAGE RECOGNITION ..ttt ettt ettt et s et st b st et e see e s benene 77
9.1 A BArCOUE SCANNE ...cucutiriiiirte ettt sttt sttt st se e e st b st et e e st eaeeene sennas 77

9.2 Project: Transit Prohibited!ccoovioeeiee e 82
9.3 Project: Face RECOGNITIONuiviiiiiiieieer ettt st se st eb e e 88
9.4 TASKS ettt ettt et e ehe et e s s e 94

L0 SOUNAS .ttt sttt ettt b s e e s bt se st es et s s et e et e e sreses nene 95
10.1 FING SOUNAS .ottt ettt sttt ettt e b ettt s st s e et st e ene s 95
10.2 ProCeSSIiNG SOUNGS......cccuuiiriiriieieieitestete e steste e stestesaeseessessessess estessessensensnsessssnes 96
10.3 MAKING IMUSIC «.veiee ettt ettt e st sr et e s e e se st e e ste st sneeneenesnnessansnnns 97
10.4 Project: HEaring CheCKccuviiicece ettt sttt s st n e sae e 99
F0.5 TASKS ettt ettt ettt et e e et st bbb b eae et 100

11 Project: EIectrons in FIeldscoc ottt sttt s e 101
11.1 Electron Source and SEt-UpPccccueieiireiceee ettt e et se st s eaaenens 101
11.2 Capacitor and Electric Field ...t 102
11.3 Helmholtz Coils and Magnetic Fieldcooeeee e 103
11.4 THE EIECEIONS ..ttt ettt et et st et et e e s 104

12 Texts and Related TOPICS ..c.ceveerereirrie sttt sttt s e 106
12.1 Operations ON STFNES ...cc.covirieirerieeee e et e e ses e 106
12.2 VIiENEre ENCIYPLION .ucveve ettt st st sttt s st sttt sttt s 109
12.3 DNA-SEQUENCING ..eeeteeeeeeieeettiietesteesteseeaesteestessse steasaessssaes snsesssasses snsessssssessreesssenns 111
12.4 Text Files and Frequency ANAIYSISuuivieieciererieeieeiee st seeseesresveseesssesseessaesenses 113
12.5 SQOL-DAtabasesccceueirieieririeieie sttt ettt et e s e bbb e b st es et st eae s 117

S I TR 123

Content 6

13 Computer Algebra: Functional Programmingcccceeceveeeeieiesenesee e s e 124
13,2 FUNCHION TEIMS ..ottt et st e s st e e e s s 124
13.2 Parsing of FUNCLION TEIMS ...ccvecececre ettt s et et sr e e asessnseae et ene 125
13.3 Derivation of FUNCLION TEIMS ...c.eciruiiiiiieiirereeire ettt st ettt 129
13.4 Calculation of Function Results and Graphsccccoeceveevecineeceseveecesseese e 131
13,5 TASKS ettt ettt sttt sttt sttt b et b s et st bt et bbbt et st 134

14 Artificial Plants: L-SYSEEMScvciieiieeecie ettt st er et ss e e sbesae e e s e nssaees 135
TA.D L-SYSEEIMS ettt st ettt sttt s e ea b et e st sbbeabes s s sae et teases sueensaensensbesnsassnes 135
14.2 Create the Drawing INSTrUCtioNccoeeeeece et s eaenans 136
14.3 The Stack OPerationsccccceiecninieie et e st r b s e eresteseennanas 136
14.4 Drawing the PIANtSc.ccveiiiiiiicece sttt ettt er s ess s e sr s e s e n e nns 137
T4.5 TASKS oottt ettt st sttt st b e s bt s et ere s 138

15 AULEOMATA oot e et e et e b e e n e enea 139
15.1 Correct Mail AdArESSEScoouiveeerireirere et sttt e e e e 139
15.2 Hyphenation: Kevin SPEAKScceciiiie ettt e e 141
15.3 Coupled TUring MaChINEScccccccci ettt et st v b e 145
15.4 Cellular Automata: Iterated prisoner’s dilemmaccccceovvveeeiievececcecceseeeee 149
L5.5 TASKS ettt ettt ettt ettt ettt st b e bt et be e bbb bbb s et ea et eae st 155

16 PrOJECLS uiviiiieeiieeestesttetet ettt e e e e s e st se saeebeebe s aueeseeete e e ee e e e e es e b e s benban e e neeneenes 156
16.1 LOGO fOr the POOKoueuiiieiie ettt ettt e et st et st es e saeaenen 156
16.2 SnapMinder by JENS MONIGoovvveeeeieeeiee et sttt sr e s s ensenans 163

16.2.1 Importing Table Dataccveeeeeeve et eaes e 164
16.2.2 The SNapMinder Dataccccccevieveseeee et raen e 165
16.2.3 The SnapMinder COUNEIIESc.ccevvevriieiieeineeeseeerertere e e e 167
16.2.4 USE SNAPMINAENueeviiiierieieetiette e e see st st steste e s sbesreannens 168
16.3 Connectivity: The World is Small ... e 169
16.3.1 RaNAOM NETWOIKSc..oveeriieiireereitieri e st e 170
16.3.2 Scalefree NetWOrks ... e 171
16.3.3 The Implementationcceeeee et s 172
16.4 EVOIULION ettt st sttt st st et s bbb ses st s 176
16.5 Using the Sensorboard Calliopeccceeeieiniieccece et 180
16.6 Rate Websites: PAgERANKccccveviiceee ettt sttt st 182

17 At the SUPEIMATKEL ...ccoeececeeeeceet ettt st et et ettt e aa et et re st st et s s eeane e eee 188
17.1 Warehouse Management With SQLItEcccvvvevriecieiecice e e e 189
17.2 The Scanning Cash REGISLEr ...cucceieiceeieece ettt ettt s 192
17.3 The SMArt SCAl ... e e e e e e 194
17.4 License Plate RECOGNILION ..o vveivee sttt st 200
17.5 The Advertising DepartmMentccccccevevere s s e es e 206

About the Notation of SNAPI-PrOZIramscccceveieeereeeececesceeteereerere et sre e raereese et e 208

HOW 10 10 2 ettt et st bttt st bt st et e be e et ettt et st ene s 210

1 CS and Media Studies 7

1 CS and Media Studies

In schools and universities, there is a lot of discussion about media literacy as part of the
"digitization offensive". Since the term "digitization" obviously concerns computer science,
CS should participate in the discussion. Educational institutions need to think carefully
about their contribution to a comprehensive education. On the one hand, children and
adolescents also gain knowledge and experience - and in many areas predominantly - out-
side of these institutions; on the other hand, the objectives of "education" and " vocational
training" should be sharply differentiated. Adolescents do not necessarily have to master
the handling of current tools, they can confidently leave that to the adult. But they must
be prepared to take on the appropriate role with future tools.

It is often argued that learners must learn to use modern media to lose the "fear of them".
| think that is wrong. First, children and adolescents usually are not afraid of the media,
but they are curious about them. Second, they learn to handle media quickly and easily by
others and by use. The fear is more on the side of the elderly, who did not grow up with
this technique and therefore feel insecure with it. Older people should remember that in
their youth, the elderly at that time discussed how to approach the handling of mouse-
controlled surfaces to relieve them of fear. We can learn from this situation that the han-
dling of current technology, such as smartphones, can be acquired by the way, but obvi-
ously this does not lead automatically to an uncomplicated use of future technology.

Goal 1: Learners need to be empowered to understand the basics of future technologies
and to acquire their use.

Media usage is not the same as media consumption. The passive use of media of whatever
kind, e.g. simple "gawking", cannot be the goal of the education system. When we engage
with media, they must be in a context that activates learners.

Goal 2: Learners need to be empowered to select and deploy tools to create media based
on their problem. So, they first must learn how to solve problems independently.

Independent problem solving usually is not seen as a central task, at least in schools. Cre-
ative subjects such as art, music and (hopefully) some of the languages at least sometimes
strive for this. Mostly well-behaved learning is in the foreground. But CS provides tools to
realize and test one's own ideas even in relatively rudimentary form. Not to realize creative
lessons would be a missed chance. However, this will only work if the teachers themselves
have experiences in independent, creative problem-solving, and if they trustin the learners
accordingly. If the teachers themselves only have "well-behaved learned" CS content, then
creativity in the classroom will usually not work out. If the second goal is to be realized in
schools, this should and must also have consequences for teacher training at universities.

Goal 3: Teachers need to be empowered to plan and realize creative lessons. There should

be opportunity and time in their own studies.

Modern media such as social networks have profoundly changed social life, communica-
tion, etc. The consequences are hard to predict while this process is still going on. Much
less they could be seen before it was started. | think it would be a complete overstrain of
teachers to demand that they address the actual social consequences of computer science
systems in the classroom, which include the impact of digital media. That would not be

1 CS and Media Studies 8

expedient, because the view on “what has happened” necessarily is turned backwards. But
what you can ask for is to show that the use of computer systems has social consequences
and that these depend very much on how the systems are designed. Different problem
solutions have different consequences - and vice versa: If certain consequences are unde-
sirable, then it will usually be possible to find another technical problem solution.

Goal 4: Learners need to know that there are almost always different solutions to prob-
lems. You should think about their effects, which of course are not conclusive. They
learn that these effects are not given but can be shaped.

Why does this affect Snap!?

Graphical programming tools like Snap! do not only contain the algorithmic components,
but are embedded in a media environment, which does not only allow the use of graphics,
sound, ... but requires it. When a problem is handled, cameras and graphics programs can
and should be used to create the appropriate costumes and costume changes that visualize
the current state of the system. Sound programs make it possible to comment on the
course itself, to edit and insert music or to design it yourself. And, of course, the results
must be presented because product pride is an important motive for the dedicated work.
And there is much interest in the results of others. Snap! allows algorithmic problem solv-
ing at a very high level, but it not only allows the analytical approach, but also the playful,
the experimental, the creative, ... Not allowed is passivity, because nothing happens by
itself. Media are essential system components, e. g. to visualize the results - and they can
also be the result itself. Snap! therefore offers the opportunity to model problem solutions
for current problems, also and especially in the field of media. The self-created algorithmic
framework of the model creates understanding of the observed processes in real life. The
experience of being able to gain this insight enables active, critical analysis of future tech-
nology. The examples in this book are intended to show that this is possible in many areas

using elementary methods. They should encourage you to get started yourself.

2 About Snap! 9

2 About Snap!

2.1 Block Oriented Languages

Snap!?is a successor of BYOB (Build Your Own Blocks), whose name already describes
part of the program: the users at schools and universities use existing commands in the
form of blocks and are enabled to develop own new blocks. Their programs (scripts) are
combinations of both. You must know that almost all programming languages are block-
oriented: command sequences can be grouped with a new name. The resulting new com-
mands can use values (parameters) to work with, if needed, and they can return results.
This gives us several advantages:

e Programs become shorter because program parts are swapped out into the blocks.
Multiply used command sequences are written only once and then reused under the
new name.

e Programs contain fewer errors because blocks are developed and tested largely inde-
pendent. The developed command sequence thus remains short and clear. "Long" pro-
gram parts are rarely necessary and usually a sign of poor programming style.

e Programs get their own style because the new commands reflect the way a program-
mer solves problems.

e The programming language is extended because the created blocks represent new
commands and thus new possibilities.

2.2 Object Oriented Languages

When dealing with more extensive problems, the number of subproblems to be solved
increases. Often these can be combined to groups which can be assigned to concrete ob-
jects. Often, these sub-problems appear time and again, so they can be solved when ap-
propriate objects are provided, e. g. in libraries. An important aspect of this way of working
is that it allows teamwork to be carried out well, with the different teams creating objects
that solve part tasks. Of course, the results must be put together. The object-oriented ap-
proach is often realized by creating classes that describe the behavior of a group of similar
objects. From these classes instances are created that are supposed to solve the problems.
In contrast Snap! realizes a prototype-based approach. For each object an example, the
prototype, is generated and tested step by step. If one is satisfied with the result, further
objects of this kind are derived by duplication (cloning) of the prototype. This way is better
for beginners.

The object-oriented approach has following advantages:

Problems become understandable because sub-problems can be assigned to objects and
(largely) solved independently.

Problems become clearer because the division into objects often corresponds to the intu-
itive view, so that "everyday knowledge" can be incorporated into the solutions.

3 http://snap.berkeley.edu/snapsource/snap.html

Advantages of
block-oriented

languages

Advantages of
object-oriented

languages

2.2 Object Oriented Languages 10

Problem-adapted tools can be provided because corresponding libraries exist or are cre-
ated.

Collaboration is facilitated because object-oriented work suggests the broader isolation
of problem solving so that the different groups are less disturbed.

2.3 Inheritance by Delegation

The concept of inheritance is central to object-oriented programming. It can be realized by

classes or by delegation. In the original article by Lieberman*, who describes the prototype-

oriented approach to delegation very early, objects are understood as the

embodiment of the concepts of their class. For example, the elephant Clyde e o
stands for everything the observer knows about an elephant. If he imagines

an elephant, there appears no abstract class of elephants, but just Clyde.

When he talks about another elephant, here: Fred, he describes it like this:

"Fred is like Clyde, just white."

What does this approach mean for the learning process? If the learner only knows one
copy of a class (here: Clyde), the prototype completely describes his knowledge, an ab-
straction is pointless for him. If he later learns about other specimens and describes them
through modifications to the original, thus replacing some methods with others, changing
attributes and adding new ones, then slowly the image of the class itself emerges as an
intersection of the common properties. Now the process of abstraction is comprehensible
for him and after a few attempts also feasible. Delegation thus is a process that maps the
learning process itself by creating prototypes instead of classes.

In Snap! we mainly work according to this principle, which is presented below in detail. If
you really want, a class system also can be implemented.

In Snap! sprites are created as prototypes and equipped with the desired attributes and cloning sprites
methods. If their behavior has been sufficiently tested, clones can be generated dynami-
cally using the clone block. Each sprite has a parent (may be null) and children (also may
be null). The parent property can be set and / or modified later, so the system of depend-
encies is dynamic. If the program stops, all dynamically generated clones are deleted,

which is beneficial.

At first, a clone inherits (almost) all the attributes and methods of the mother object. This
is indicated by a "paler" representation in the palettes. If a sprite overrides inherited at-
tributes or methods, they replace those of the prototype, as usual. If you delete the over-
rides again, then the inherited appear.

4 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, 1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html

2 About Snap! 11

2.4 Whatis Snap!?

Snap! was (and is) developed by Brian Harvey and Jens Ménig for the project Beauty and
Joy of Computing® and is made freely available on the internet. Since the system runs in
the browser, it does not require any installation and works on almost all devices®. It is sim-
ilar in surface and behavior to Scratch’, a free programming environment for children de-
veloped at MIT3. However, the implemented concepts go far beyond this: here are the
roots at Scheme, a LISP language, teaching language for decades at MIT. They are intro-
duced e. g. in a famous textbook by Harold Abelson and Gerald and Julie Sussman®. Snap!
is thus a fully developed programming language that can be used for (almost) all problems.
For most, it is sufficiently fast now. That is not self-evident and was a shortcoming of their
predecessors. Graphical languages are largely concerned with controlling the state of the
system. For example, to allow you to interrupt endless loops or to "tolerate" access errors
to data structures. There remains little time for program execution.

Snap!is a graphical programming language: programs (scripts) are not entered as text but
composed of tiles. Since these tiles can only be joined together if this makes sense, "mis-
spelled" programs are largely prevented. Snap! therefore is largely syntax-free. Neverthe-
less, it is not entirely free of syntax, because some blocks can handle different combina-
tions of inputs: if you combine them incorrectly, errors can occur. However, this happens
more in advanced concepts. If you apply these, you should know what you are doing.

Snap! is extremely "peaceful": mistakes do not lead to program crashes but are indicated
by the appearance of a red marker around the tiles that caused the error - without dra-
matic consequences. The used tiles, which include the newly developed blocks, always
"live". They can be executed by mouse clicks so that their effect is directly observable. This
makes it easy to experiment with the scripts. They can be tested, changed, broken down
into parts and put together the same or different. This gives us a second access to pro-
gramming: in addition to problem analysis and the associated top-down approach, the ex-
perimental bottom-up construction of subprograms, which can be put together to form a
complete solution.

Snap!is clear: both program sequences and assignments of the variables can be displayed
and tracked on demand on the screen.

Snap! is extensible: with the implemented LISP concepts, new control structures can be
created, e. g. to work with special data structures.

Snap! is object-oriented, even in different ways: Objects can be generated by creating
prototypes with subsequent delegation, as well as in different ways by classes.

Snap! is first-class: all structures used are first-class, so they can be assigned to variables
or used as parameters in blocks, can be the result of a function block or content of a data

> https://bjc.berkeley.edu/

6 These are, of course, computers, tablets, smartphones, ...

7 http://scratch.mit.edu/

8 Massachusetts Institute of Technology, Boston

9 Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

the developers

origins at Lisp

barely
syntax errors

two styles of
programming

vivid and expandable

object-oriented

2.4 Whatis Snap! 12

structure. Furthermore, they may be untitled (anonymous), which is important for the im-
plemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of
Snap! contains the same proud Lambda, which builds the hair of Alonzo, the mascot of
BYOB.

2.5 Whatis Snap! not?

Snap! is not a tool for professional software production. It started as a technology study
commissioned by the American Ministry of Education under CE21 (Computing Education
for the 21st Century), which is also designed to reduce the drop-out rate in technical sub-
jects. It is a tool to implement and test CS concepts by way of example.

Snap! primarily is used for work in the field of algorithms and data structures. Due to the
browser environment, essential areas of computer science such as access to files or hard-
ware can be embedded via extensions but are not (yet) part of the core language. How-
ever, the built-in url-block allows in the meantime quite easy access to the Internet and
thus using intermediary servers to databases or external hardware. Both are included in
the book.

Since the code of Snap!is freely available, there are different modifications. Whether that
is a curse or a blessing, it will be shown.

Snapp!

Alonzo

the limits

2 About Snap! 13

2.6 The Snap!-Screen

Snap! Build Your Own Bl X ' [Snap!d4.] Reference Mar X

< C | @ Nicht sicher | snap.berkeley.ed: e/snaphtml *

(Y Y f# zero knowledge protokoll

€ contral G
(=

&S [7 amggavie

Scripts Costumes Sounds

]
o

ifo-or 18

[5et 1o pick random @D to @D

[Show variable |
[hide variable

o

st

(Jj in front of B
(item KD of A
all but first of B
fength of B

< H contains]

|y ——

The Snap!-Screen consists of six sections below the menu bar 0.

e On the far left are the command tabs, divided into the categories Motion, Looks,
Sound and so on. If you click on the corresponding button, the tiles of this category are
displayed below. If they don’t fit all on the screen, you can scroll the screen area in the
usual way.

e To theright, in the middle of the screen, the name of the object currently being edited
as well as some of its properties are displayed. The default name of the sprite can - and
should - be changed here.

e Underneathis an areain which, depending on the tab, the scripts, costumes and sounds
of the sprite can be edited or created.

e Top right is the output window where the sprites move. This can be resized using the
buttons above or via the entry in the tool menu (Stage size ...).

e Downright the sprite corral displays the available sprites. If you click on one, the middle
section changes to its scripts, costumes or sounds - depending on the selection.

e The menu bar on the left offers the usual menus for loading and saving the project as
well as individual sprites. Furthermore, many settings can be made. One possibility is
to set the language. Nevertheless, | recommend that you stay with the English version,
as it is possible to differentiate your own blocks, titled e. g. in German, from the native
ones at first glance.

e On the far right we find the green flag known from Scratch, with which several scripts
can be started at the same time when using the corresponding block. The pause button
next to it pauses everything accordingly and the red button stops all running scripts.
Individual scripts or tiles can be started simply by clicking on them.

10 The division of the areas can be changed with “

Sprite-bezogene
Einstellungen

the tool menu

the menu bar

2.7 An Example for experienced Users: Flu 14

2.7 An Example for Experienced Users: Flu

Snapt Buid Your Own 8. X e - 8 x

€ = C [@ Sicher | hitps//snap.berkeley.edu/snapsource/snap him 7 i

iy

¥

=

The example simulates the spread of a flu epidemic under different conditions. It provides
a quick overview of the essential features of Snap! and is intended especially for experi-
enced programmers. Beginners should read the next chapters first.

The question is which proportion and which special groups of people in a population should
be vaccinated if the spread of a flu epidemic is to be stopped. The question is not so easy
to answer, because the outcome depends on several parameters: the likelihood of infec-
tion indicates how probable the infection of a healthy person in contact with a sick person
is, the seroconversion time is the time between infection and immunization, the numbers
of healthy and diseased persons at the beginning of the simulation determines the number
of contacts between them, and the number of multipliers indicates how many people in
the population have particularly large numbers of contacts or contacts to particularly dis-
tant groups. If one of them becomes infected, e. g. the disease will be worn in distant areas.
Since contacts, infections, ... are randomized, we will only achieve sustainable results if we
perform the simulation multiple times with the same parameter values - and after that we
still must discuss which values represent "results" in the sense mentioned. That's why the
topic is perfect for a small classroom project. A "control group" develops the higher-level
scripts, in this case assigned to the stage. It designs the task distribution with the other
two groups. The other groups develop the prototypes person and graph, which are largely
independent of each other.

three prototypes

for three groups

2 About Snap! 15

2.7.1 Writing Your Own Methods

At various points it is necessary to get rid of the clones of a prototype without exiting the
program. We achieve that by a new method delete all clones of <prototype>. It is a
Command block, which is a command with (in this case) one parameter. (Function blocks
are called Reporterin Snap!.) New blocks are written in the block editor. It can be started
with the buttons Make a block we find in the palettes or —the fastest way — by right-clicking
on the script layer and calling it from the context menu. First, we specify the method name,
if desired with blanks and special characters, select the type (Command, Reporter, or
Predicate) and indicate whether it’s a global ("for all sprites") or local ("for this sprite
only") method. We can also choose the palette to which the block is to be included. | do
not recommend this: The best place to find the gray self-written blocks is the bottom of
the Variables palette. For example, if you evaluate student programs, it is often a problem
to find the newly created blocks at all.

After pressing the return key, the Block editor opens, and the block name appears — with
+ characters in the spaces and margins. There, we can open another menu
by mouse clicks, which allows to insert parameters in these places and to
assign types to them if necessary. In our case, we click on the far right, enter
the parameter identifier prototype and click the small right arrow to specify =
the typing. After that a selection box opens!t. We choose as type Object (the R It

arrow), come back into the Block editor, and drag the required commands :H;:i“

(C-shape)

into its script area.

© single nput

@ Mg inputs rahe s it o inpus

Our method uses two script variables (clones and thisClone) known only in [[=] E———"
this block. It asks the parameter prototype, which later is passed with a ref-

[delete all clones of

o forallsprites s for this sprite only

OK | Cancel |

OK Apph G |
] pply | ancel 7

©® IF o
B (unevatusted)

erence to the prototype of all persons, for its descendants — these are all
occurring dynamically generated "persons"*2. As long as these are still avail-
able, it will store the first in one of the script variables, delete them from the
list, and then ask that person to delete themselves, with

tell <thisClone> to <delete this clone>3,

1 This box is described in detail in the snap-reference manual that you get when you click the
Snap!icon on the top-left of the window.

2 The clones created statically through the context menu in the sprite area are not found
there.

13 The delete block can only be found in the palettes of the sprites. You can reach it in the
stage via the search function at the top of the palette area.

2.7 An Example for experienced Users: Flu 16

2.7.2 Elementary Algorithmic and Variables

To define the parameters and other control values, we use the stage, which we click in the
sprite corral. This responds to the message "go" by setting the initial parameters and de-
termining which quantities are to be measured in the simulations. Thereafter, correspond-
ing simulation runs are started.

In detail: Since initially only the prototype person is available, we "fish" for him using the
block my <other sprites> from the Sensing palette. The prototype is the first element of
the received list. We store it in the global ("for all Sprites") variable protfotype person that
we created previously in the Variables palette. We also created all the other required
variables via the Make a variable button, with the ones needed only within the stage
being marked as local ("for this sprite only"). You can recognize them at the "marker" be-
fore the name. The others are global. Global variables are displayed at the top of the Var-
iables palette, then follow the local ones. The output area is cleared (there might be an
old graphic), some variables get appropriate initial values and a list called data to record
the simulation results will be deleted (set <data> to <list>). This part could have been
well outsourced to a separate block, but since we want to experiment with the variable
values, it is better if they are "on the table".

In the following, the

number of initially vac-
cinated (the immune
normal) is increased
from zero to 100 in

set protolype person to item @) of 'my othersprites N o
infection probability to [B3

to g
to
initial value healthy multipliers

to

initial value immune normals | to [{

seroconversion time setinitial value ~

steps. We find the con- initial value persons

trol structures for this to [J
in the Control palette.

For each value, a series

number of simulations

of simulation runs is
and the
mean value is deter-

v

performed,
-
mined from the results
(here: the maximum
number of infected).
The variable number
of simulations deter-
mines how often this

v
start a simulation

v

happens. After each
run, the results are en-
tered as a percentage [list
in the data list. Finally,
the Graph sprite will
be asked to create a

el)
to (data

graphic. [&nm B mmosomt NSRS
delete all clones of prototype person

a4
draw diagram

Variable name

(pmlulwe person

 Tor this sprite only

i’ Cancel l

7 for all sprites

anchor to clear the clonesA

| round [/ initial value immune normals / initial value persons |.{ &[0}

Make a variable

Delete a variable

(imitial value healthy multipliers
maximum value
 number of healthy multipliers

(number of immune multipliers
 number of immune normals

change | by gD

start simulations for different vaccination rates y/

perform several simulation runs in each case

measured here is the number of infected persons

v
enter the result in the list

2 About Snap!

17

2.7.3 Creating Objects

In addition to the script already described, the control
program uses another one: simulate. In it, some initial
values are reset, and the corresponding number of per-
sons are generated, which differ in type (normal, multi-
plier) and status (healthy, infected, immune). After that
the simulation run is started by sending the message
"come on!" which is heard by all objects in the system.

How to create objects?

In the method we create a person type: <type> and
status: <status>. A local script variable p references a
newly created clone of the specified prototype. After
that, the clone is present, visible and accessible under
the name p — quite simple.

However, the clones should differ in type and status. For
this, they contain (here) a local method inherited from
the prototype setup <status> <typ>. We have to call
these with the given parameter values. We therefore
"tell" the object p that it should execute this method. As
this is local to persons, we take the <afttribute> of <ob-
Ject> Block from the Sensing palette, select the proto-
type in the right-hand box (here: Person) and after that
in the left box the desired method (here: sefup). Because
two parameters are to be specified, we expand the block
with the small arrow keys and enter status and type be-
hind with inputs. The block is to be understood as "p,
please execute in your context of methods and variables
the method passed with the specified parameters". The
block is equivalent to the well-known dot notation of the
OOP languages: p. setup (status, type) ;

9 simulate

set number of infected normals | to J
Q create a person of type: [
set numberof healthy multipliers | to {IH' {

;epeat number of healthy multipliers '

set numberofimmune normals | to ﬂ

set numberof healthy normals | to
{initial value persons | initial value immune normals) —
initial value healthy multipliers

repeat number of healthy normals
9 create a person of type: [IF]] and status:

set number of infected multipliers | to (I

set number of immune multipliers | to [J

reset timer

9 create a person of type: type and status: status
script variables p

set p |to(a new clone of Person |

tell p to 9 setup N W of Person with inputs status | type

9 setup s
set status | to &)

set type

go to x: (pick random @I to X)) v: pick random GI[P to LD

set size to P %

invoked methods in Person

2.7 An Example for experienced Users: Flu 18

2.7.4 Communicating with Objects

We are now coming to the actual players in our flu project: the persons. These are symbol-
ized by small circles whose color expresses their status. "Normal" persons scurry around
relatively small-step in their environment and meet the neighbors, where they can be in-
fected or can infect. After a certain period, the seroconversion time, they become immune
and do no longer infect, are no longer infected. Vaccinated persons are immune from the
beginning. Some of the people are "multipliers", i.e. they jump quite wildly around the area
and can spread the infection quickly. They are color coded like the normal, but slightly
different. We produce appropriate costumes in the graphic editor or a drawing program
and import them into the Costumes section.

Once the persons are created, they all receive all the message "come on!". They respond
to this message because they have a hat-block from the control palette that responds to
"come on! ", After that, they get into an infinite loop that only breaks when the global
variable finished? gets the value frue. This is the case when there are no more infected.

In this loop, the following actions are performed repeatedly:

1. Objects are searched near the person and stored in the list neighbors. Too far objects
are deleted in this list.

2. Any remaining neighbors may become infected or infect the person if they areiill.

3. It is checked whether the person has to be immune, if the Seroconversion time has
expired. The corresponding variables are changed.

4. After that, the person moves according to their type.

Since data has to be exchanged between persons during these processes and other peo-
ple's method calls are initiated, the example shows a few ways to do this:

The ask <object> for <function call> block is used in the script when looking for neigh-
bors. Because the members of the neighbors list can be arbitrary objects, we throw all
non-person objects out of the lists. In this case, this can only be a Graph sprite. We use
the my <attribut> block from the Sensing palette to ask each object for its name: ask
<item <i >> of <neighbors> for <my <name >>. A little further down, this is done again
in the status query. Again, the <attribute> of <object> Block is executed in the context of
the other object. Therefore, the blocks are surrounded by a gray ring indicating that the
unevaluated code of the block is passed and not its current result.

Directly above, the same happens to the local command infect. This is done - as already
described - via the tell block.

Turtle

import a picture from another web page or from
2 ke on your computer by dropping it here

costume# of

ten o/ i 1)

g

2 About Snap! 19

In two places below, local methods - shown in gray - are executed in the context of the
object. This happens "normally" when the block is reached.

when I receive come on!

set starttime to timer

repeat until finished?
X Blocks for direct

set neighbors | t0o my neighbors . .
> communication be-

seti tofl tween objects
v

find people neary , IS

(_ distance to ' item (i of (neighbors ‘/IE

L [taunch T
it &> .

(ask item (i of (neighbors |for my name (call

[taill [t
delete (i of neighbors

else
change i | by &P

(ask i for

|' run b wfcuntinuntiun-

[call w /continuation

| when I start a;a_ clone
[create a clome of |

(new clone of mysell
[detete this clone’

repeat until SRR TN UK RE L L v
 — infect with contact

if status = [IFETT

of (neighbors |for status of Person

number of infected multipliers | by &I

number of immune multipiiers | by &

number of infected normals | by &P

number of immune normals | by &I

change x by

change y by (pick random &I to &P

change x by | pick random [P to &P

change y by (pick random [P to &P

if on edge, bounce

2.7 An Example for experienced Users: Flu 20

The method infect infects the current object, if necessary, and changes the appropriate
numbers. After that the appearance of the object is changed.

{ status = and
¢ pick random P to E[[P | 7 infection probability

change number of healthy muitipiers by &

change number of infected muttipliers by &

change number of healthy normals = by &

change number of infected normals by &P

change maximumvaiuve by &P
set status | to [QIEECH

set startime | to timer
'9 show yourself

The method show yourself select the appropriate costume and determine if there are still
infected people left.

9 show yourself

status —

switch to costume immune multiplier

< number of infected normals | 4] » and
< number of infected multipliers | 4 f]

set finished? [to< true @

2 About Snap! 21

2.7.5 Drawing a Diagram

Finally, we want to have our results displayed in a diagram.
The initial number of vaccinated (in %) and the maximum |8 o 0 T n e

number of infected persons (in %) were measured. We cre-

script variables i

ate an object for this purpose, which we donate a beautiful 2
switch to costume pen

set size to P %

point in direction €K

pen as a costume. We first have to paint and label a
coordinate system on the screen. We find the blocks for this
in the Pen-palette and (the /abel block) in the Tools-Li-
brary.

The ascertained data are in list form as variable data: set pen color to
" data
11 A B
1 0 g
2 3 14
3 7 79
4 10 84
5 13 54 scaling y-axis
[17 3
T 20 42
8 23 kT
9 27 41
10 30 g L —) =
“ = Z -qotox.mv.@+l

With the helper method and these data the graph can be Jaadhdedl 150 BELL 55 &0
created: We send the pen to the first data point, given by a W= SR S 7 ST TR0
list with the two mentioned entries. After that we lead him change | by €D

lowered to the remaining points - with some re-calculation.

go to x: &P v: €D

label of size &FP
(LRGBS -150 BN 160 J

label of size &FP

2.7 An Example for experienced Users: Flu 22

The result can be admired on the infected in %
1008 1
90
80
70
60
50
40
30
20 T
16 T

0 f——————+——
10 20 30 40 50
vaccinated in %

output area:

In each case, 300 "persons" were used without multipliers and with only one initially in-
fected (red: infected, yellow: immune, green: healthy). One can see: if half of the popula-
tion is to remain healthy in this model, then 20% have to be vaccinated.

blocks of the Pen palette

clear

'i)ennp

| set pen color to

[change pen color by gD
:Setpenmbvtuﬂ
(ﬁliimgepenslmdebvﬂ'
| set pen shade to P

éllange pen size by P

set pen size to P

| stamp

fill
pen trails

Make a block

® ©
@ o © ® ® P =
:..o ° .Qo..~’ .o .\“.‘.'
o, § _o° ® e %0¢m
‘on e & *:) ©
® © o 0° o e °a o
°W° ¢ ° o .
°'e .8' o o e & o
oe® o0 o‘o.o‘....‘ 6
S % 8o 000 % %
@ 0P ‘ 00 ® *r
e®o o.‘ @ ‘0 . o 8000
®e oo ° o P
® :. ". 0 .:9% OSO%O
0o ¢ t.. ®
.: °® 0 . ..‘ ®o0

3 Simple Examples

23

3 Simple Examples

The following examples demonstrate some aspects of Snap!. They are quick to implement

and should inspire modifications and extensions. Above all, they show how easy is visuali-

zation in Snap!.

3.1 Swimming

Contents:
e duplicated objects
e communication via messages

e local and global variables

We draw a swimmer in three states of swimming
(arms elongated or spread, legs bent). These three
images additional are mirrored so that the swimmer
seems to swim in the opposite direction. Afterwards

we draw a swimming pool with pathways as a stage
background and look for a costume for a trainer in
the costumes library of Snap!. That's Cassy in this case.

We create two sprites, the first being the swimmer and the second the trainer.
If we click on the green flag, the competition should start. The swimmer goes into
starting position on the left lane (x = -195). Its x-position is stored in a local vari-
able x, which is different for each swimmer. Everyone swims in his orbit. Since
the swimmer is a bit big, we scale him to 40%. He then waits for the start signal.

The trainer is also slightly downsized and is sent down-right to the edge of the
pool. There she gives a tip to start the competition. She waits for it too.

Since the blue water is part of the stage, it only receives a single script that re-
sponds to a mouse click. The stage then sends the message "come on!" only to
the trainer. If one uses a two-element list as a message, the first element repre-
sents the message, the second the one or more addresses.

After that our trainer sends the message "start" to all, notes that the competition
has begun, and then jumps around a bit.

wait UG LA 1 RON 3§ secs

switch to costume (pick random &) to &P

set size to [P %

.f:witdl to costume swimmer-close1
to

go to x: (X y:

point in direction EIE>

set direction | to jup|

set size to P %
g0 to x: @D v:
switch to costume trainer1

N

L= Mclick-on-the-waterto-start!

broadeast list IERN (EI

3.1 Swimming

24

Our swimmer starts with the message "start". He notes his
start time in a local variable, because afterwards each swim-
mer measures his own fime. Thereafter, he periodically
changes his costume depending on the direction of the swim
and glides a random piece forward a random time. His direc-
tion is also stored locally, as the swimmers turn around at dif-
ferent times. After the movement, the swimmer shows his
new time, measured from the starting time, and checks to see
if he should turn back. Then he checks if he is at the finish. If
the competition is still running, he is happy because he is the
winner. This is indicated by changing the variable competition
is running and sending out a message. It was created as
global, since it applies to all participants. In any case, the
movement ends at the finish (stop <this script>).

If all goes well, then four duplicates of the
swimmer are created by right-clicking on its
costume

in the sprite area and selecting show

duplicate
clone
delete

"duplicate" from the context menu. The lanes of

the now five swimmers are assigned by specify- parent..

ing the x-value. The time variables of the individ- i

ual swimmers should be displayed above the tracks. For this
purpose, the check mark in the selection box is set in the Var-
iables palette. By right-clicking on the variable

= normal
e large
< slider

slider min.__
slider max.__
import.
export.

display (the monitor) you can choose different
representations. We take "large" and slide the

ads across the lanes.

—

script variables random

set random | to! pick random &) to &P

if random - 1)
say for I secs

ing ends.

W That's-a-result! ROTE 10 JE2-uS

if ‘random =[]

L= \Well -yournever-know RCTE 10 =S

when I receive start

set starttime to timer

to [I

set time

switch to costume swimmer-long1

glide (pick random X to LEP secsto x: (x y:
B (9 pick random 1 to /10

switch to costume swimmer-wide1

glide (pick random KPP to LEP secsto x:(x y:
y position + ﬂdﬁ’wﬁﬁéﬁ:{ﬁ,ﬁ;f 15;1‘,

switch to costume swimmer-close2

glide (pick random X to LEP secstox:(x y:
y position + pick random &P to &P

switch to costume swimmer-long2

glide (pick random XP to LEP secsto x:(x y:

switch to costume swimmer-wide2

glide Bi;:lt random m to m secs to x: (X y:

v vosition+ (@B vick random € 1o €D)

set time (to timer — start time

touching ? and

if competition is running
gay won!|

’ ;et competition is running

broadcast

to < @ faise

If someone has won, the trainer comments
on this by setting a script variable of the
script to a random value and expressing
herself accordingly. That's when her pranc-

3 Simple Examples 25

3.2 Solar System*

Contents:

e multiple objects

e parameters and their typing
e parallel methods 0

We get a picture of the sun and some planetary im-
ages from the net and shrink them a lot. Then we'll
load them as costumes into a planet prototype sprite
called Planet. A second sprite called Starter organizes \, /

the "creation" of a solar system. :\

Our planet has a set of local variables describing its state. These includes its mass m, the

speed components vx and vy, the acceleration components ax and ay as well as its dis-
tance from the sun r. These values are passed to it by a global method sefup. We create it

using the Make a block Button and enter its name. Since the method is to be global, we

|se1ud

take the default "for all sprites". Parameters now can be entered for the + characters that

appear in the block header next to and between the identifiers. We click the first "+" to the . "mg .,,,..,,..,.,4)
right of sefup and enter the parameter name x. We could leave it at that, because Snap! o) cawelj
guesses the type of a value (usually) correctly. But we want to typify the parameters. To

do this, click on the small right arrow to the right of Input name. An extensive selection
window appears. In this we click Number to specify that only numbers can be entered as

a parameter value. For the next parameters we proceed accordingly with the name typed . Create input name
as Text. We get:

i} Cancel |

As a script of this block we now need to insert code that will send our planet to the right

place, take the parameter values into the variables, and select the right costume that re-

sults from the planet name. Finally, a local method move yourself is started. Because it

contains an infinite loop, the program must not "hang" in this loop. Therefore, we start start parallel processes
move yourself using the launch block which creates a parallel process (a new thread) and

executes it. This allows the program to continue without waiting for an end of move your-

self. Each planet runs in its own thread.

1% |n a fairly simplified version: The sun stands like nailed in the middle and the planets do not
affect each other.

3.2 Solar System

26

If the sunis in the origin of the coordinate system, then you

get the gravitational force on the planet F = —G * —;
T

(vectors bold), therefore a = —G * :4—3*r. From the two ac-

celeration components ax und ay we calculate changes of
the speed components vx und vy and from these changes
of the position. This happens again and again in the
method move yourself.

Now we have to create an new solar system.
We clone our planet three times and baptize

. L. show
the clones Earth, Jupiter, and Saturn. This is Tdupiicate
clone
done using the context menu in the sprite delete
parent...
area. export...

Finally, our Starter Sprite comes into play. This stamps a
sun image in the center of the coordinate system and starts
the three planets by calls to the setup method, which
works in the context of the planets with their local values.

y position x vy position

set ax

set ay to ,’

change vx

change vy

go to x: [x position + wx vy:| y position + vy

All values have been selected
so that the trajectory curves
at least partially fit on the
screen.

)

3 Simple Examples

27

3.3 Caesar Encryption

Contents:

e dealing with character strings

e simple typecasting

e blocks as macros

e text output with the tools library
e event handling

Project notes...

Mew AN
Open... AQ
Save A5
Save As..
Import...

Export project...
Export summary...

Impaort tools
Libraries...
Costumes.
Sounds...

import J _Cancel P

We want to encrypt and decrypt simple strings using the Caesar method. Since this is very
hard computer science, we also need a very serious, somewhat boring surface. There
should be some buttons on it. We import them from the Costumes library using the File
menu. (As you can see, there are much more "interesting" costumes in the library!) The
button image is exported to a file. With the help of a graphics program we make it a little
bit longer and label it differently. We reimport the resulting costumes. We create three
new empty blocks called text input, encryption and decryption and make sure that our

buttons respond correct when you click on one of them.

We copy the button twice using the context menu in the
sprite area and change the costumes and blocks accordingly.
We drag the buttons to the right place, change their names
e. g. to bTextinput, and remove the check mark in front of
the box draggable. Now the button is stuck.

Then we create four global variables named original text, ci-
phertext, decrypted text, and key. We show them on the
screen with monitors (set a tick in front of the variable
names) and change to a large representation using the con-
text menus in the display area. After that we pull them to
suitable places.

We import the Tools library (see above). Here we need only
the block label <text> of size <size> from the Pen palette
to label the output. To do this, we create a new sprite named
Control that provides a very serious interface and changes
the variable key when the appropriate key is pressed.

draggable

s\et pen color to

g;o (OB -220 BTH

label Textinput U ESF 2R 14)

g;o to x: @XD v: €D

label SETHTH of size GZD
go to x: (220 RN 40]

labe! [ETITREH of size G
g;o to x: VA 10 J

label [T7H of size G

to "nail a sprite"

g0 to x: Q2D v: €D
11 WChange-key-with-up-and-down-keys P 2N 14]

We now come to the actual functionality,

which can be developed independently of [text input
each other. Text input is simple: we ask for

the original text. Sure, the output can be Text Input
made much more beautiful. Ciphertext:

key:

ask and wait
set originaltext | to answer

decrypted Text: -

Change key with up- and down-keys

3.3 Caesar Encryption

28

Caesar encryption consists
of moving all characters in
the code (here: in Unicode)
by the key length. The last
characters are moved for-
ward cyclically. In the ad-
joining script this is done
very verbosely, but - hope-
fully - legibly. Note that the
green length of <string>-
block from the Operators
palette works with strings,
the brown length of <list>-
version from the Variables
palette works with lists.

decryption
script variables | i char

set decryptedtext to]

encryption

script variables | i

set ciphertext
to

repeat until

set i

.

set char

set code

to i

i >

to letter i

if & &0 5D > [96)

char | code | cipherchar v
a few script variables for detailed
= display v
delete old content
length of LT TR %
edit all characters s

of original text v
get ith character and determine character code

to | unicode of ' char

and € code |3 | D4

convert lowercase to uppercase 4
change code | by &P
and € code v
the actual Caesar encryption 7

change code | by L&'

.

if ‘code > [J

change code | by &P

set cipherchar

set ciphertext

change i

code

repeat until . (i > (20 1J7 ciphertext

.

set cipherchar

to letter i

set code

change code | by &P

set char

of ' ciphertext

to | unicode of ' cipherchar

to | unicode code as letter

set decryptedtext | to(join decrypted text

by &€

change i

to | unicode ' code as letter A 4

to | join ciphertext

by €D

cipherchar

attach cipherchar to ciphertext
cipherchar o o

v
next step y

The decryption is done inversely
for encryption.

VZ

Text Input

This is a total secret text!
YMNX NX F YTYFQ XJHWJY YJCY!
LN AL RS THIS IS A TOTAL SECRET TEXT!

Change key with up- and douwn-keys

Ciphertext:

char

Simple Examples 29

: Desert ants live alone in the desert. If they leave their burrow they look for

Tasks

. Find out about the XOR encryption. Implement the procedure.

Find out about transfer procedures for encryption. Implement the procedure.

Find out about the cryptanalysis. Implement a frequency analysis.

In the camel problem, the animal is in a terrible situation between three pyr-

amids. It moves purposefully towards a randomly selected pyramid. Once it A

has travelled exactly half the distance to the pyramid, a hateful desert spirit Yo,

comes and whirls the poor creature around, so that it no longer knows which L

pyramid it was driving. The movement, of course, leaves a print on the A
)

screen, and the procedure begins anew.

The goat problem is popping up in the media every once in a while. The point ...

is this: in a raffle there are three doors behind which there is a goat in two,
behind the third is the main prize. The game leader who knows the positions
asks the player to guess a door. He then opens one of the remaining doors, What'”:“' Y4
behind which a goat is located, and offers the player to change one's choice | —

—or not. The question is: Should he do that? Realize the game and decide the

question empirically.

something edible in the area. Once they find this, they run right back to the Yz
burrow. Obviously, they remember what movements they have made. From

these they calculate the direct way back. Realize the process.

On their way to the burrow, the ants lay a pheromone trail that evaporates
slowly. On it they find their prey, take another piece and run back to the bur-

row, laying a new pheromone track. If they haven't found anything, they
won't leave a new trail.

Two young ladies sit in the theatre bistro and get bored. One stands up and
goes ... and then the story goes off! But how?

4.1 Organisation of Cooperation 30

4 Simulation of a Spring Pendulum

In addition to the extensive freedom of syntax, the excellent visualization possibilities and
the good-natured behavior of Snap! in case of errors are an incentive for the learners to
proceed experimentally and test their own ideas. In addition to the analytical top-down
procedure, this results in a bottom-up approach of the trial-and-error, which is important
for beginning programmers because it allows them to gain experience in this field, which
they can systematize later on. Experimental approach opens up opportunities for inde-
pendent problem solving right at the beginning instead of following given results.

In the field of simulations, including many of the usual games, we find enough simple but
not trivial problems which can be solved by beginners with a bit of good will. Experimental
work naturally requires an interest in developing one's own ideas. We therefore need
problems that generate sufficient motivation. As an example, we choose the simulation of
a simple spring pendulum, which hangs on a periodically oscillating exciter. Ok, ok, | already
know that an example from physics does not have a very motivating effect on all learners
- rather in contrary. But I'm not giving up my hope!

4.1 Organization of Cooperation

If groups work largely independently of each other, it must be clear on the one hand in
which framework they work, and on the other hand how the results can be brought to-
gether later on.

To create a frame, you can create empty blocks with the correct names as "dummies".
These can be used in scripts without any functionality. The required objects can also be
created and provided with rudimentary behavior, e. g. in response to events: You can, for

example, output a speech bubble with an explanatory text: "This and that should actually
Project notes. .

happen now! " This program frame can be exported and imported as a whole or in parts: New "N
pen A0
Save S
e The project can be exported with all its parts using the file menu. It will appear at the %
bottom of the Snap! window. Clicking on the arrow to the right of it will take youto —» e
the download folder where it was saved. From there it can be dragged into any Snap! s
window and opened again. ! S

e |[f there are global methods (blocks "for all sprites") in the project, another item "Export
blocks..." appears in the same menu. If it was chosen, the blocks to be exported can be
selected in the window that appears. These can be dragged into open Snap! windows
like projects.

Ll Federpendelxml “

4 Simulation of a Spring Pendulum 31

e Sprites can be exported with their local methods as a whole by selecting the item "ex-

port..." in their context menu in the sprite area. The re-import is carried out as de-

. show
scribed above.

duplicate
clone
delete

parent._.
e Within a project, scripts can be transferred from one object to another by dragging export...

them from the sprite where they are located on the script area to the sprite in the sprite
area that is to be supplied with the script. The addressee will be highlighted a little bit
when "dragging on", if it has noticed that it is meant.

The example of the spring pendulum contains several parts that are largely independent,
so that group work is almost unavoidable.

the screen layout

We identify

e an Exciter, the dark top-left plate that periodically swings vertically. Its frequency w
(instead) is an instance variable and can be changed in the variable display.

e a Ball, which is relatively stupid on a thread, but understands at least so much physics
that it knows the basic equation of mechanics.

e a Thread that has to draw itself again and again so that we don't see any protruding
ends on the screen.

e a Pen recording the motion-time graph of movement.

e a Clock for the common time.

4.3 The Exciter 32

4.2 The Clock

We create a new sprite and draw a simple watch as its costume. When clicking
on the green flag, we choose this costume for the clock and send it to the top-

switch to costume Clock

right corner. After the clock has been started using the start message, it sets the &5
variable t to zero and remembers the time of the timer built into Snap!in the [EElaES (210 RN 150 J
variable start time. Afterwards, it continuously transfers the past time in sec- set startfime |to timer
onds into the variable t, which is available to the other sprites as system time. s
Since the times t and start time logically belong to the clock, we choose them foreves,
as local variables. Local variables can be accessed from other objects via the |- (IR | el = = r e
<attribute>of <object> block of the Sensing palette. We export the clock “

sprite as specified to the file Clock.xml.

Extension: Let the sprite display the time (minutes and seconds) either "digital" & of Clock
or by moving the pointers correctly.

4.3 The Exciter

We draw a simple rectangle that symbolizes a plate hanging somewhere. Since the plate
should only swing vertically, it needs a fixed x-coordinate on the screen (here: -200) as well
as a resting y-position (here: 150). Around these it oscillates with a fixed amplitude (here:
10) with a variable circle frequency o (here: 150). With help of the time t that initially has
a value of zero, the y-coordinate is calculated to

y =150 + 10*sin ot.
This information can be translated directly into a script.
when
switch to costume Exciter

set x to @D

set w |to [EY

The script starts to work when the Go-message (click green flag) is sent. Since the scripts
of the other parts have to be started at the same time, this option is senseful.

The variables used are more interesting. The time is
imported by the clock. The frequency is not required when up arow_| key pressed
in any other script and should therefore be created lo-
cally. You can change them using the arrow keys.

We export the sprite as described as Exciter.xml.

Extension: Let's also draw the "laboratory ceiling" against which the exciter swings. Alter-
natively, a roll can rotate, which leads to a vertical periodic movement via a pulley.

4 Simulation of a Spring Pendulum

33

4.4 The Thread

The thread replaces the coil spring. It has only one characteristic, the spring constant
D. This is set once to a fixed value, then a bright vertical line is drawn at the location
of the thread, which deletes its old representation (which of course could be done
more elegant). Then the current line from the ball to the exciter is drawn. We export

the object as Thread.xml.

Extension: Instead of a simple string, draw a spiral spring with a constant number of

coils stretching and retracting.

4.5 The Ball

Our physical knowledge is "incorporated" into the ball,
which can be rather flimsy: we know the basic equation
of mechanics F = m*a as well as Hooke's law F = D*s,
with S the distance from the zero position. Furthermore,
the acceleration a is the change of speed per unit of time
and Vv is Known as change of position per unit of time.
Nothing else. We translate this knowledge into a se-
quence of commands: We determine the current deflec-
tion s, from this F, from this a, resulting v and from this
the new position.

We export the ball as Ball.xml.

Extension: Introduce a friction constant R that decreases
the speed by a certain (small) percentage. R can also be
changed interactively in a meaningful way.

set pen color to JJj
' set y to @)
' set y to

s\et y to | yposition of Ball
| set pen color to

switch to costume Ball il Exclies

90 to x: LD v: €D

set y to' y-position

to y-position | of
to' D of Thread

to F /'m

4.6 ThePen 34

4.6 The Pen

The pen does not have any local variables. It travels slowly from left to right and moves in
the y-direction to the y-position of the ball. It writes. We add as a small delicacy the func-
tion that it starts to re-write when it reaches the right margin.

point in direction €K
= -
set size to @ %

go to x: @EP v: | y-position | of Ball

set pen color to
\
set pen size to @&

go to x: GEP v: ' y-position | of Ball

J

We export the sprite as Pen.xml.

Extension: Enter a way for the stylus to derive its x position directly from the system time.
It should also be able to run at different speeds.

4.7 Why is it a simulation?

Our example contains some basic knowledge of physics, but there is nothing to be found
in it about resonance, beatings etc. With the program, we check whether the necessary
consequences (according to Heinrich Hertz) of the basic knowledge agree with the obser-
vations in the experiment, i.e. whether our ideas of physics resultin the observed behavior.
We're simulating a system to check our imaginations. Instead of mathematics, we use an
algorithm that tracks system behavior over a sequence of small temporal changes. So in-
stead of integrating "mathematically”, we iterate "informatically". However, except of the
simple cases a tool for the integration of a differential equation system does nothing else.

Something completely different is an animation in which the observed behavior is pro-
grammed. No new phenomena can arise here, because everything is known. Animations
present something, simulations can lead to real surprises.

/

5 Troubleshooting with Snap! 35

5 Troubleshooting in Snap!

Snap! visualizes the program flow without requiring special activities of the learners. This
alone makes many errors "visible", which would otherwise require the laborious analysis M

of code to find them. For example, if a body moves in the wrong direction, then it is quite Delete a variabie
clear what to look for.

Since global and local variables can be displayed on stage by ticking the checkboxes in front Fi stackA
of the variable name in a monitor, their change can be observed directly. Script variables § /@~ 7//% 0
can be displayed in the same way if the show variable <name> or hide variable <name> — e
blocks are built into the script. An essential aspect of troubleshooting is the "freezing" of
the variable assignments at a program stop: if you end the program, the current values of
the variables are retained and can be inspected.

Control outputs during program execution can be easily
accessed using the Looks palette blocks: say <some-

thing> for <n> secs and its relatives also allow more ‘ Sive

stackA
stackB

tracked on the screen. The wait <n> secs and wait un- il
til <condition> blocks enable pauses in the program
flow at certain points and/or when certain conditions

complex expressions to be output, so they can be

occur.

If the process of the entire programme is to be followed gradually, then the
Visual Stepping must be turned on (at the top of the output window). n

-
length: 0 -
“ >

(;dis-: size E_;
('ur (temporary) _“_ J

After that, the footsteps will appear light green, and next

to them a slider will appear that determines the pace. A

button appears between the green flag and the red stop Monitors of a global

button to interrupt or start the stepping process. If the list, a local sprite

speed controller is on the far left, the program can be variable, and a

L ipt variable.
run through in single steps. The currently executed block Seript vanable

appears light green.

If the program execution is to be

followed within the own blocks,
then these must be opened before
starting the program. The blocks
can also be nested.

0K | Apply | Cancel |

5 Troubleshooting with Snap! 36

We want to follow the processes with a small example. For whatever reason - the problem
of the "Towers of Hanoi" should be dealt with. Therefore we draw a disc and assign this
costume to a sprite disc. Further discs are to be produced by cloning. We have written a

method for this - but it does not work. Too bad!

To locate the error, we open the method in the editor, click on the Visible Stepping
button, set the desired speed and then click on the new block again. In the editor we can
track the commands called - and where it goes wrong.

!B,;‘_gutnmv:i'm+ * I of Disc

Ermor
expecting list but gelting nothing

There's something missing!

Other blocks that can be helpful in troubleshooting are found in the libraries. They are
described by their own help pages, which are accessed through their context menus.

For me, the most important way to search for errors is to remove blocks from
the scripts and "just let them lie" next to them. If a script works after that the
blocks can be inserted again one after the other. In most cases the error can be
narrowed down quickly.

Drag the orange tag from
the catch block
to the throw block.

You can change the tag’s name
by clicking on it without

yor
‘more than one catch block:

&

6 Lists and Related Structures 37

6 Lists and Related Structures

Delete a variable

Contents:

e elementary handling of lists
e sort

e more complex applications

In addition to atomic data types such as numbers, boolean values and characters,
Snap! knows the structured types string and list. Strings are described later in this book
because they allow many applications. This section deals with lists because they are prac-
tically always needed. All higher structures can be built up easily with them. The use of lists
is first shown in a simple case - sorting, followed by more complex applications.

6.1 Selection Sort item @ED of &

all but first of B
(length of @

The example is extremely simple: it uses only global variables and blocks without parame- | —

ters, i.e. macros that serve to combine a command sequence under a new name. Since it =
add G to B

[delete g of @
insert (5 at @D of
We start with an empty Snap! project. If we want to sort something, the elements to be BT <R T

also takes advantage of the visualization possibilities of Snap!, it is a very good introduc-
tion example in lessons.

sorted must be stored somewhere. For this purpose, there are variables, which can be im-

agined as "boxes" that can hold any content. For saving several elements there are lists, a
kind of "row of boxes". The blocks for editing variables and lists can be found in the Vari-
ables palette.

By the way: The magnifying glass for searching in the upper right corner of the palettes
shows us candidates for blocks corresponding to the search pattern. Among them we find
blocks written by ourselves and some that are not in the palettes at all.

So, we create a variable called unsorted numbers and assign an empty list to it. (With the
arrow keys in the list block we could also enter initial values.)

set unsortednumbers |to list e e e

If the variable is displayed, it appears in the output window. There we can choose different

unsorted numbers
presentation forms in the context menu or we place the list as a dialog anywhere in the 0

ftems
Snap! Window. In the same way, we create a second list of sorted numbers that will later

store the sorted data

list view. ..
First of all, we need unsorted data — as usual random numbers. |Wdtalog.]
We create it with a _
small script. The |l unsorted numbers | to list

number of random
values is deter-

mined by the num-
ber of repetitions
in the loop.

6.1 Sortieren mit Listen — durch Auswahl

38

We test the script several times - time and again we get
a new number list. Great! We proudly create a new
block called generate new numbers. (Right-click on the
script area.) In this one we simply append our script to
the "hat" with the block name. Done - we have written
a new command! We can find it at the bottom of the
Variable palette - if we didn't specify anything else.

From this list of numbers, we want to select the smallest
number. To do this, let's assume that the first number is
the smallest. Afterwards we will look at all the following
figures. If one is smaller than the previous smallest num-
ber, we will remember it. If we are through, then we "re-
port" the result - we write a function get the smallest
number.

It works great, too. However, only once, because we
can't find the next smaller number in this way. This is
only possible if we remove the smallest one from the list
every time. Because we only know which was the small-
est number after the entire run, we remember not only
its value but also its position - and throw it out after the
run through the list.

Sorting a list now is very easy: We get the smallest num-
ber from the unsorted list and put it in the sorted, one
after the other. Ready. The script is packed again in a
new block. We call it Selection Sort.

(unsorted numbers ‘sorted numbers |
i s B
el 64 [

sorted numbers

~

generate new numbers

to list

set unsorted numbers

add (pick random &P to P to (unsorted numbers

T—

generate new numbers

get the

smallest number

set smallest number
to

set |
repeat until < i

to item @ of (unsorted numbers

> length of (unsorted numbers

1 item (i of (unsorted numbers < smallest number I

set smallestnumber to item (i of (unsorted numbers

report smallest number

get the smallest number

set smallest number

to

to item @K of (unsorted numbers
s\et position

to
repeat until - '1 >

set i

length of (unsorted numbers
{# item (i of (unsorted numbers < smallest number |

set smallestnumber to item (i of (unsorted numbers

set posiion | to Q]; }

delete (position of (unsorted numbers

?e}oﬂ smallest number

Selection Sort

to list

set sorted numbers

repeat length of (unsorted numbers

add (get the smallest number to (sorted numbers

-

6 Lists and Related Structures 39

6.2 Quicksort

As a second, recursive example we want to realize Quicksort!® in the same
environment as above. To do this, we'll first write a more elegant method generate (n # new numbers

for creating new numbers using a parameter and local script variable. This =5 a2 = Es o oeT

N

allows us to indicate how many numbers we want. set resull |to list

set numbers | to generate [new numbers repeat n

z;dd pick random &) to & to (result
Quicksort is started by specifying the list to be sorted.

The actual work is done in the block devide and arrange the list<list>

between <left> and <right>. As pivot element we select the middle of
the respective partial list.

Table view

devide and arrange the list ' list between)P and length of (list

-
=

‘devide and arrange the list | : between left# and ' right #

script variables i re pivot h
set i to

set re |to QLS

set pivol to item| round | ‘left + right »/‘a of (1

© W~ DU b W R

R
=3

g

£ item re of (1 =

seth to item i of (1
replace item ‘W of (1 with

replace item ‘re of (I with h
change ii by &P
change re by &P

(ievide and arrange the list 1 between left and re

.

if ‘right > h
&evide and arrange the list | between li and right

15 The procedure can be found in various versions on the Internet, e. g. at http://de.wikipe-
dia.org/wiki/Quicksort. An in-place implementation was selected here.

6.3 Routing with Dijkstra Method 40

6.3 Routing with Dijkstra Method

A graph is given by an adjacency list. In this all nodes of the graph are listed. From each
node a list "goes off" with the neighboring nodes and the respective distances: that is,
those nodes to which a direct connection exists. Examples are a very simple graph and its

adjacency list.

Az }>li}—{c[2]
[a} o7} >[c[5]
Az} >{e[1}-{c[7]

To solve the problem, we need a specialist: we

draw Mr. D. He must be able to generate the

adjacency list of a given graph. The graphs are
simply drawn on the background - here very
tastefully done.

We create the list statically by adding the cor-
responding elements to a local list, which we
return as result of the operation.

CUr dist [R list [2 7 «p R list [2« Mlist [0 2 «» X Hist[F 2 4|

;dd[\lbiﬁ] D ist [A (5« XSt [C 2« list [F [T «» HHiSt (G [T ¢ I to

entering nodes and

edges as sub-lists in

_— another list
E 5 4» L list[F 1[5 «» list

The global variable adjacencyList receives these values via a simple

assignment.

For further processing we need three other lists: The list openTuples includes tuples that
contain the name of the node, its total distance from the start node, and the name of the
predecessor node; the list distances includes tuples that contain the name of the node
and its total distance from the start node, it is sorted anew each time something is added,
so the node with the shortest distance from the start is in front; the list finishedNodes

6 Lists and Related Structures 41

contains the names of the nodes that have already been finished. The setup of these lists
for the startup is summarized in a preparation method, which also transfers the name of
the start node. After you have called it, you'll find the following situation:

N

preparation | start = A

delete B of (openTuples

delete B of (finishedNodes
delete K of (distances

add ([5: start E]r to (openTuples

The searching process is very simple in this version, because most of
the "intelligence" has been put into the handling of the lists. This is routing from | from=A to (to=H

done in the method step. set adjacencylis! |to new adjacency list
preparation ' from

repeat length of (adjacencylist

show result to

\step

script variables

neighbors | currentTuple | currentNode ' dist neighbor ' i
currentIndex

—

For the tuple currentTuple with 5% curentTuple | to item @D of (openTuples

the smallest distance, the new dis-
delete) of (openTuples

tances are calculated for the neigh- %=

. set currentNode @ to item of (currentTuple
boring nodes. e

set dist |to item @& of (currentTuple

set currentindex | to

set neighbors | to item @K of (121 currentindex |ui adjacencylist
The node is marked as edited and JEX R T =L AR ENE (TS TN T S
all unedited neighbors with new (Y cinenttiode Y diet 1)

to
repeat length of (neighbors

<

set neighbor | to item (i of (neighbors

total distance and predecessor
nodes are entered in openTuples.

[not - (finishedNodes contains

item K9 of (neighbor item @E) of (neighbor +

currentNode

add 15«

openTuples

This list is sorted by distance and

tuples with larger distances are de-
leted. remove double tuples

6.3 Routing with Dijkstra Method

42

How to sort, we have seen above. Here it is done by selecting the smallest item.

“sort open tuples

script variables ' sortedTuples i

set sortedTuples |to list

repeat length of (openTuples

. -

set min | to item @ of (1211 &K i openTuples

set pos to |J

seti toH

(1.1 length of (openTuples — &P

if* item @) of 1i=,) i |ui openTuples) < min

<

set min |to item @E) of (L) i Ui openTuples

delete (pos of (openTuples

delete @ of (openTuples
repeat length of (sortedTuples

%,-_.,Lé i sortedTuples) to (openTuples

delete I of (sortedTuples

remove double tuples

script variables ' k

repeat until* ‘i > length of (openTuples

<

if ¢ item @ of (120] Ui openTuples
delete (] of (openTuples

else

change | | by &P

the list sortedTuples takes
up the sorted tuples

assuming that the smallest
distance comes first

find even smaller distances if
necessary

add the tuple with the small-
est distance to sortedTu-
ples and delete it in open-
Tuples

copy back the sorted list

Now for each node the tuple
with the smallest distance is
at the top of the list. If other
tuples occur for this node,
they are deleted.

6 Lists and Related Structures

43

Finally, we must select the distance to the searched node and let Mr. D. display it.

~

show result ' to

~

script variables | i

seti tolfd

set dist |to

set disl |to item @FD of (510 i ;i distances

(T;e distance is 10 |

think for @ secs

think (join dist for @[P secs

Mr. D.'s gonna find out!

6.4 Matrices and For-Loops 44

6.4 Matrices and FOR-Loops

If we have lists with direct access to each element, then we don't need any special arrays,
stacks, queues, etc. of our own accord. All higher data structures can be built from lists.
Nevertheless, we are still working on the data structure matrix because it is traditionally
used, for example, in the adjacency matrices. (Attention: for the sake of brevity, we waive
all security questions!)

Of course, we pack a matrix in a list. For this purpose, we agree on the following list struc-
ture (arbitrarily):

[llist with sizes of index ranges] [list with data 11

The dimension of the matrix is derived directly from the entries in the first sub-list. A two-
dimensional sequence with two values per line would have the following structure:

[12,3]111,2,3,3,4,5,6]]

We create a two-dimensional matrix of the size a x b by creating the two desired lists. The
first contains the two passed parameters, the second one should be marked as empty, e.g.
with a minus sign. We return the result. We use global methods.

Now we can write values with set into the ma- The syntax can be

new Matrix [5D . LX) 1

N trix, nice and clear. We first get the dimensions chosen freely,
script variables matrix . . .

= and determine the width of the matrix. Then we with parentheses,
sot| max_f0] E<t QoEAWAD (= calculate the position of the place to be changed if you like!
fegeat a x'b and overwrite the corresponding list entry. The

add J to (1-LI@ESR9 i matrix get method is used to read matrix entries.

r:porl matrix

(5% matrix : (4% a# 5+ b#)t = & value (375 matrix : [+ a# J+ & b# &

script variables pos script variables ;)os

L N
mx item @ of ((ZL1GED | matrix

replace item (pos of (<) @ESK9 i matrix) with (value

In many programming languages, the counting loop is the most common tool for passing
through matrices. In Snap! we find something like this in the Tools library, but we can
write such a control structure ourselves. To do this, we create a new block for <counting
variable> from <start> to <end> step <step> do <script> and take a closer look at the
type of parameters.

Write your
own control
structure.

6 Lists and Related Structures 45

We mark the counting variable i as upvar. This allows you

to change its name "externally", even though its internal
name remains the same - /.

start, end and step are normal number parameters.

We mark the script as C-shaped command. This means
that it is regarded as a command sequence that is trans-
ferred to the block unchanged, i.e. it is not evaluated.

Kl Delete l Cancel l

C-shaped makes sure that the block gets the usual ap-
pearance of Snap! commands, where the command se-
quence to be executed is inserted into the "mouth" of C.

Using this loop method, we can quickly fill a matrix with
random numbers.

% ©1 new Matrix[/2,73 1

for(f from @ to @ step @ do

height (display (row

—
set width |to item @D of (1.1 &RK> Ui matrix

~

set heighl |to/ item @ZSE® of (-1 @K i matrix

set dispiay |to list

for(_i from &P to height step &P do
"_f:et>row to list

for @fromﬂ- to ([)step /1 do
add (get EEEY [ED . (D 1 to(row

add (row to (display

say | display

for(a from @B to & step §P do
for @fromﬁ" to/ 2 step’71 do

set () [€ ., (D 1 to/ pick random &P to €&P

Finally, we want to display the matrix
"decently" on the screen, i.e. in the
usual two-dimensional table form. To
do this, we create a list that is filled

with sub-lists, the rows of the matrix,
that contain the table data. This list is
displayed and can be moved anywhere
as a table view.

Table view
3 A B
1 93 40
2 27 41
3 99 44

6.5 Tasks 46

6.5 Tasks

1. Find out on the net about the various sorting methods. Implement some of them

like Shakersort, Gnomsort, Insertionsort, ...

2. Complete the specified methods in such a way that incorrect entries are inter-
cepted.
3. Implement matrices differently by structuring the used lists differently.

4. a: Find out more about the data structure dictionary.
b: Implement the structure with appropriate operations.

5. a: Implement the data structure stack.
b: Implement the data structure queue.

6. Implement a simple binary tree with the operations
new tree

insert <element> in <tree>

count elements of <tree>

is <element> existent in <tree>?

delete <element> from <baum>

determine the maximum depth of <tree>
balance <tree>

7. Implement other control structures:
a: do <script> until <predicate>
b: while <predicate> do <script>
c: case <variable> of < [[value1,script1], [value2,script2], [value3,script3], ...] >

7 Object-Oriented Programming 47

7 Object-Oriented Programming

OOP methods have also been used up to now - because there is
hardly any other way. At this point the OOP possibilities of Snap!

About. ..
will be explained in more detail. Please refer to the Snap! Ref-

Reference manual
erence Manual, which provides a concise explanation of the | Snap! website
Download source

procedures. You can find it by clicking on the Snap! icon at the
top-left.

The blocks that are important for the OOP can be found in the
Control- and Sensing palette, but also the context menu in the

sprite area has to be considered. The lower blocks of the control
show

duplicate
menu for "static". This difference is important because it is clu?m

palette are used for "dynamic" management of sprites, the

assumed that only the static clones should be permanent, the delete
parent...

others are deleted when you save and are not even displayed in i

the sprite area.

Snap! works with objects called sprites all the time, of course.

% position

They have their own attributes (e. g. position, direction, cos- v posifioe
directi
tume, etc.) which can be accessed with the help of different Costume #

costume name

blocks. The my <attribute> - block delivers the whole palette, Sizet t
conten

the <attribute> of <sprite> - block knows the most important

ones and displays the local variables and methods of a sprite.

To select a local method, we place the pro-
totype of the object on the right side of the
<attribute> of <sprite> block and then se-
lect the desired method. The block returns the code of the method, which can be recog-
nized by the grey ring around the method name. We exe cute this code in the context of a
sprite that has something to do with the code: usually the prototype, a clone or a copy of
it. This can be done using several blocks, e.g. ask:

Using the clone command from the context menu of a sprite (see above) we can create
additional static clones. These are distributed randomly in the output window. Dynamic
cloning also creates new sprites, but all at the same place. If you save the project and re-
load it, the statically generated clones are re-created, the dynamically generated clones

are not. 16

An essential aspect of the OOP is inheritance. In Snap! this is based on Lieberman's dele-
gation modelY’, which works with prototypes (i. e. concrete objects, non-abstract classes)
and clones and modifies them if necessary. We will first illustrate all the procedures using

simple examples, after that more complex ones.

6 This is a real advancement: with many clones, it is often tedious to get rid of them without
destroying the project.

7 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, ACM SIGPLAN Notices, Volume 21 Issue 11, Nov. 1986

| costumed | of

‘my neighbors

7.1 Anne and the Filing Cabinets 48

7.1 Anne and the Filing Cabinets

Contents:

1. prototypes, copies and clones
2. static creation of clones

3. accessing local methods

We draw the costume of an elegant chest of drawers and
create a sprite of this name. The chest of drawers contains
a local list variable as a data store, which we represent

through this same chest of drawers. We provide them with

local access to the data by implementing the methods put
<data> and get. This results in a simple queue. We can write any content into the list and
remove it from it. Both methods and the variable are indicated by the <attribute> of
<sprite> block.

We want to use two of these data stores. We can either make copies or clones of the pro-
totype. In the case of copies, the contents of the list are also copied so that we have several
lists. For cloning, a reference to the list is generated, so insert operations, for example, all
affect the list of the prototype. You can see this by the brighter representation of the var- shiowy

iable block. To obtain independent lists, we must break this connection after cloning, for M
example by resetting the list: set <content> to <list>. We decide to make copies and cre- clone

ate two of them, the sprites Papers and Souvenirs with slightly changed costumes. For delete
these we need external access. WT

export..

® position
y position

direction

costume # —
costume name set temp | to item) of (content

< r
size delete @ of (content
content report (7=

else

| report |nozn|ng

7 Object-Oriented Programming 49

We get help from the IT representative Anne. Anne can see the existing methods on other
sprites, but how can she access the data stores? There are several options available in
Snap! for this purpose, both for Commands and Reporters.

Find another sprite's method:

- Select Sprite (prototype if necessary) in the right input field:
- Select method in the left input field:

X position
y position
diraction

costume #

9put § of Cabinet

costume name

The call yields the code of the method:

Run a local method of another sprite:

Parameters are passed in sequence in the fields after "with inputs". They are inserted in
the spaces of the method header if it is clear which method is executed at all.

Commands

with tell: Anne transmits the method header with the corresponding parameter
values (here: coral necklace) to the object in question (here: Souvenirs).
The called object follows tell.

tell Souvenis |to| (9 Put | of Cabinet | |with inputs FEFIIEETE |

with run: Anne stores the object to be called in a variable (here: papers). She re-
quests this object to execute the transmitted method with the corre-
sponding parameter values (here: customer files). The called object is
named in the input window of the of - Block.

set papers | to item @E) of my othersprites

run (9 put i of (papers |withinputs EECITRI |

Important: First the method must be selected by specifying a suitable
prototype as object. Afterwards the variable can be inserted!

with launch: | like run, but the script is executed as a separate process, i.e. without
waiting.

7.1 Anne and the Filing Cabinets 50

Reporter
with ask: Since it is a call to a reporter method (a function), a value is returned.
Possible parameters are transferred as described above. The called ob-
ject follows ask.
(@sk souvenirs (for @ get of Cabinel
with call Comparable to run. Again, the called object is called as a second input.

If attributes of another sprite are to be changed externally, this can be done as usual using
a set method. But it also works directly: we execute the set <variable> to <value> block
in the right context:

run ([set [toll | of Papers | |with inputs BRI list i 4 §

And of course we can call the standard blocks.

tell Souvenis |to| move @[steps

ask Souvenirs | for! / touching edge |2

Anne, as a well-trained IT representative, of course can issue such commands, but a normal
user cannot. Anne therefore makes new global blocks available, which have the additional
parameter of the filing cabinet to be used. This greatly simplifies use throughout the entire
system. Anne is happy.

get data from cabinet ' cabinet name

.

store | content in cabinet ' cabinet name

if ' cabinet name = [FTTH

PO =% Pagers_Jior] (G | of Cabinet ummmmm"

if (cabinet name = SNTIH

() (W put] | of cabinet | FUGELTNEN content X3

7 Object-Oriented Programming 51
Tasks
1. Implement access control for the filing cabinets either at the cabinets or at the IT
representative
by password request.
with user lists and associated passwords.
2. Process the data for yourself
by introducing plausibility checks.
with encryption.
with use of data structures like lists, rows, stacks, queues, trees, etc.
3. Store the data appropriately in text files.
4. Organize a data center that stores, backs up and organizes the data of a company

(school, family, etc.). Define access rights and methods and implement the proce-
dures.

7.2 Magnets 52

7.2 Magnets o
Contents: - ."";.. g
[=] _—

e prototypes and clones =g P v K

. . -
e dynamic creation of clones o= - - 4
e accessing local methods f’ &

e’ ‘

As a very simple example of how to deal with ob- ’;' ' 4

jects, we select a magnetic field whose orienta-
tion near a "north pole" is indicated by "elemental magnets". Those little things should
point to the North Pole.

So, we draw the big magnet without any functionality (you can only push it through the
area) and a single small one. We provide it with the required properties and clone it as
often as necessary.

Pointing to the big one is easy. If an elementary magnet receives the message "come on!",
. Lo when I receive comeon! |
it constantly aligns itself to the north pole.

Cloning is a bit more complicated, because we point towards Big-Magnel

naturally want to distribute the clones in the

image area, like this:

The small magnets are distributed in the left
image area - but only if a clone yourself at <x> & TR SR TR e T
<y>- method is available. We can write it using

the new knowledge of method calls of other ~
(SN e EEE R |9 clone yourself at @) @) of Littie Magnel

objects.
! with inputs G FNGATIN-200 RON 50 B G HCUGATAN-150 RO 150) 4)

We write the method as a block of the elemen-
tary magnet. In the method we create a clone @ clone yourself at (x# (y#
and assign it to a local variable. We send the = = , —
L script variables newClone
clone to the position indicated by the parame- -
- . . . (a new clone mysell
ter values, rotate it in any direction and let it e Lacne il mysel |

appear. Ready. tell newClone to| gotox: 'x y:(y

Dealing with many dynamically generated

tell newClone to point in direction pick random P to &P

clones is extremely simple: click on the red stop
button at the top-right of the window and eve-

ryone will be gone again. And because dynami-
cally generated clones are not displayed in the sprite area, their scripts are really fast. If
you move the large magnet, then all elementary magnets are realigned - immediately

Task: Add a "south pole" to the "north pole" and determine the direction of the force
on the elementary magnets at their positions. Align the elementary magnets in this field.

7 Object-Oriented Programming 53

7.3 A Learning Robot18

Contents:

e prototypes and clones
e overriding methods

e accessing local methods

Another example of delegation inheritance is a robot with four touch sensors. If one of
these comes into contact with a hindrance, the robot changes its direction, but also has a
new dent.

We use a drawing program to draw a picture of a world that is bounded by black walls and
in which there are some black obstacles. For reasons we will soon get to know, we spray a
diffuse red fog around the objects and along the walls with the spray can. We put Roby
into this world - as a small circular sprite. Furthermore, we draw an even smaller blue sprite
with a predicate touching the wall?, so equipped with a touch sensor. We clone this sprite
three times and then attach the four sensors to the robot. We call them according to the
cardinal points TouchSensorN, TouchSensorE, ... etc. An aggregation occurs. We equip
the robot with two local variables vx and vy, which describe the velocity components in
these directions. If a touch sensor now signals a wall, the corresponding velocity compo-
nent is changed. We get the following configuration, in which Roby moves between the

obstacles - as already mentioned, with many dents.

Q touching the wall? of TouchSensorN

How to make aggrega-

tions is shown in the

next chapter.

J

[1#l ask TouchSensorW | for < Q touching the wall? of TouchSensorw | |3 ‘

change x by (vx
change y by (vy

]

18 The example has as a template the walking robot of Prof. Florentin Wérgétter, Bernstein
Center for Computational Neuroscience Gottingen, described e. g. in
http://www.chip.de/news/Schnellster-Roboter-lernt-bergauf-zu-gehen_27892038. html

7.3 A Learning Robot 54

Now the red spray paint around the obstacles and walls comes into play. This shall identify
areas in which an ultrasonic sensor picks up echoes from the objects. We therefore equip
the robot with four ultrasonic sensors that react to this red color. We call them USsenorN,
USsensorsS, ...

The robot should learn that an ultrasound echo often precedes a collision and that it is
therefore better to reverse if this echo is heard. We therefore need a mechanism that de- J
tects that there was an echo before a collision. One way to achieve this is a counter in the

ultrasonic sensor, which is set to an initial value (here: 100) when it detects red color (i.e.
an echo). This counter is continuously counted down to zero - and if necessary, it is in-
creased again before. If this counter has a value greater than zero in case of a collision, the
echo has been received shortly before.

The ultrasonic sensor sets a counter to an initial
value. Then it is counted down to zero.

) direction of time]

The touch sensor dissolves. Since the coun-
ter still has a value greater than zero, an
echo was received shortly before.

This constellation initiates a learning step that takes place in a neuron. It has two inputs,
which come from the assigned touch sensor or ultrasonic sensor and each with a weight,
as well as a threshold value. The input from the touch sensor has the weight 1, if a signal
of e.g. strength 1 is received from this line, it is multiplied by the weight 1. The result is
greater than the threshold value (here: 0.5) and the neuron "fires". The weight of the US
sensor initially has a value of 0, which is increased whenever the touch sensor detects that
the counter of the assigned ultrasonic sensor has a value greater than zero in the event of
a collision. If there are enough such small learning steps, the product of weight and signal
of the US sensor also exceeds the threshold value of the neuron and this fires in this case

the neuron
"fires".

as well.

impulse from

the US sensor amplification factors

per input

impulse from

touch sensor 0.5 I

7 Object-Oriented Programming 55

We are now realizing this form of Pavlovian learning.

The ultrasonic sensor works exactly as described above. The local attribute counter can be
accessed directly with the <attribute> of <object> block. The actual changes therefore
take place in the touch sensors and the four assigned neurons. Since these are clones of
the only prototype, it is almost enough to make the additions only in this one. They take
over the changes because they inherit the methods of the prototype. However, we still
must specify which element of the four groups the sprite should react to.

When touching a wall,

9 touching the wall?

it is still necessary to

if / <, counter | of USsensorS » and © color | is touching | ? determine whether

tell to @ increase weight of NeuronS | [the associated ultra-
sound sensor has trig-

report . color | is touching | ? gered "shortly be-
fore".

In the clones, we overwrite the inherited "pale" method by adjusting the associated sen-
sor. This also makes the pallor disappear. Previously, we cloned the ultrasound sensor and
neuron three times and added the four new purple ultrasound sensors and the yellow neu-
rons to Roby. He looks like this now:
The neuron still
Q is firing?
report
\J"ask TouchSensorW | for
< ask USsensoW [for < Q an echo is heard? of USsensorW , | 4

need a predicate
is firing? which
works as de-

¢ touching the wall? of TouchSensorW

scribed above.

Finally, we change Roby's

behavior: he changes his

set vx | to/ pick random &3 to &P

A direction
set vy | to/ pick random &3 to @&

[i#l ask NeuronN |for < @ is firing? of NeuronN |

when the

corresponding neuron fires.

set vy to/ @ x vy
- J
|l ask NeuronS |for < 9 is firing? of NeuronN l
set vy to G x vy

-

[# ask NeuronE |for - Q is firing? of NeuronE |

— J
8 ask NeuronW |for - Q is firing? of NeuronN |

to @GP x wvx

set vx

change x by (¥vx

change y by (wy

when clicked

set counter | to [J

[i# Q an echo is heard?
to Y

set counter

else
if ‘counter > [J

by &P

change counter

9 increase weight

if weight <[]
0.1)

change weight

inside the neuron

Roby with sensors
and neurons

7.3 A Learning Robot 56

Roby now looks for his way, first between the obsta-
cles, then along the "echo range".

i

&

> o
@@@@@@‘3‘9

USsensoi USsensol USsensol USsenso Berihmum Berithrum Meuronl MewronS

“@@

NeuronW Mewron(Beribrun Berithrun =~ Roby

Tasks

1. Give the program an interface that makes it easy to change the main factors: its
speeds, weights and thresholds.

2. Introduce additional sensor types and other events in addition to the collisions.
a: Let Roby find correlations between sensor values and events in different "worlds".
Roby thus adapts to its surroundings.
b: Discuss other ways Roby adapts to a changing environment.

3. Discuss the need for "forgetting" and possibilities to realize this process.

4, Replace Roby with a mouse with a cheese sensor. Put it in a labyrinth. Let it look
for the cheese there.

7 Object-Oriented Programming 57

7.4 A Digital Simulator

Contents:

e aggregations

e static and dynamic creation of clones
e use of the launch block

A Snap! Build Your Own B/ X ' €9 Deepl Ubsrsetzer x
C | @ Sicher | https//snap.berkeley.edu/snaps

h ‘& ' ix digital simulator

€ Control Cll i

o

T=hing

[delete g of @
[insert Gl = @ o1 B

| replace item @S of & will

Make 2 block

append H
reverse g

remove duplicates from
(‘sort B ordering with |

.. otherwise mark
the connection as

empty pr

A digital simulator is a program that can be used to simulate digital circuits. It consists of
switches, LEDs and gates, in this case only NANDs (Not AND) from which all other circuits
can be constructed. Different types of sockets are located on the components, which are
used to transmit signals.

We can display the correlations clearly in a (simplified) UML diagram:

e switch | socket | —————=2< gate with two inputs and one output |
1L S
input \out|put | | NAND AND OR XOR

In this case, the inheritance takes place via delegation.

7.4

A Digital Simulator

58

74.1

Sockets and Connections

As the "mother of all sockets (jacks)" we draw a neutral socket which

serves as a prototype for input and output sockets. All sockets have a

value that can be 0 or 7, but inputs get their value from the cable or, if

they are not connected, we set them to the value 7 for technical reasons.

They represent the result of a logical circuit. All jacks inherit from the
neutral jack the method show yourself, which represents their value, as
well as a local variable named value.

Using the context menu (clone), we create two clones of the neutral

socket, which serve as prototypes for inputs and outputs.

3 show yourself

if - value =m'

switch to costume value0
else

switch to costume value1

else
switch to costume neutral

Sockets should be connected by clicking on an output first and then an input. If only the

input is clicked, then its connection to an output is deleted - if it exists. Connections are

presented only as lines on stage. If the switching elements are moved afterwards, the lines

remain "free in space".?®

Inputs can be con-
nected to one output
at the most. For this,
they get an additional
variable connection.
Outputs can distribute
their values to several

inputs, therefore they
receive a list variable
connections for the
connected inputs. If an
output is clicked, the
global variable the-
Output receives this
output as its value. If
an input is clicked, it
updates the connec-
tions.

when I am cicked

<

set theinput to my sell

it not 4 connection |- CIT

"1 connection 12)| |9 delete connection

with inputs 1778 ¢

v

(21 K%Y |9 draw line from @) @ to @ @ with color @

it not heoutout FITTT)
| theoutput
9 draw line from @) @ to @ @ with color @

with inputs CITZT) CIZZID)
CTRIY

| set connection

x-position

of (connection

of Pen

X-position

of (theOutput

of Pen

LZ 1 theOutput 1) | § new connection >

else

sel connection

to
(Y emoty

set theOutpul

_r:et theinput | to 0]
6 operate

with inputs (108 <)

> (T

hd

... otherwise mark
the connection as
empty.

V.

19 The representation and especially the arrangement of lines is an independent problem.

Delete the old
connection logically
and graphically

v

If an output has
been selected ...
w

enter this output

as a connection
and have it drawn

7 Object-Oriented Programming 59

For outputs it’s a bit easier: they provide the options for entering and deleting connections
- and wait for what comes.

9 delete connection | input 3>

script variables ' a

seti tofd

repeat until ' ‘i > length of (connections

U® item (i of (connections = input W new connection | ﬁlput>

delete (i of (connections

édd input to (connections

=

set connections

7.4.2 Switches

Switches are used to change output values. We create two costumes {
representing the open or closed state. At the right end, an output
socket is connected, which either has the value 7 (status "open") or 0
(status "closed"). The socket is obtained by cloning the output socket.
Afterwards we push the sprite to the correct position at the switch.
Now it must be anchored there. To do this, we move the sprite symbol
from the sprite area over the switch in the output window. Its outline
lights up when it notices that it is meant. This means that the socket is
attached to the switch: it is the anchor of the resulting aggregation.

Since we want to use the com-
ponents of our digital simula-

if* | costumename

of LA =M switch-closed tor via mouse, it is advisable

< that the switch reacts to
switch to costume switsch-open . L

= mouse clicks. This is easy to

achieve: he changes the cos-
tume with every click. To do

switch to costume switch closed .
—. this, he needs to know what

U
| set| vake_|to (] he looks like: with <costume-

name> of <my self> he gets
the current costume.

launch |9 operate of item @F® of ‘my parts

We still need a mechanism to control the reactions of the parts, this time of the output
socket. Since it should be transferable, the procedure must be generally applicable. We
therefore equip each component with an operate method and a variable value. If the state
of the switch changes, the value of the switch changes. Finally, it calls the operate method
of the output - this is the first element of the parts list. We use the launch block to keep
the program running.

r%r 'lfrO:

e 4L dKE
Ausgangl Auspanyl Buchse

theOutput = [T

~
set theOutpul to my seli

else
set theOutpul | to [TIT0]

to remove duplicates from (connections

E.
NAND

Generate an aggrega-
tion of sprites: the
socket becomes ele-
ment of the switch's
parts list and are dis-
played on the sprite
symbol of the switch.

4

Switch(2)

With detach from ...
from the context menu
of the socket, they can
be removed from the
switch.

—C/D-.

——a

7.4 A Digital Simulator 60

7.4.3 Gates

To create gates, we first introduce a prototype Gate with two inputs and one output. It
also contains a variable swifching time. We attach the necessary sockets as learned with
the switches. Other gates such as AND, OR, XOR or NAND can be derived from this gate.
For the NAND we create a clone of the Gate named NAND and provide it with an adapted
costume.

The prototypes derived from the Gate inherit the operate method of the gate and the
instance variable value. Both are of course superfluous, because the gate has no proper
function at all. We therefore leave the method blank and overwrite it in the derived
prototypes. (If we forgot something, we can create variables and methods in the prototype
afterwards. These are immediately passed on to the clones. Inherited attributes and
methods appear slightly brighter in clones than their own. If they are overwritten, they get
the normal color.

NAND's operate method is easy
to write. The my <parts> block
shows us the inputs and outputs L C RTINS

their values or set them like at
the switch. We use the Jaunch |\ (LRI LG - [

block instead of the run block [imsa i
again.

launch \&omte of | item @R of ' my parts

7.4.4 The Pen

The pen provides only one simple

vvdraw line from (x1 # yl# to x2#
‘nr #

method for drawing straight lines in
different colors on stage. He does not
have any other tasks.

set pen color to JJj
set pen size to (3]

set pen color to

set pen size to &P

do tox:(x1 y:(yl

go tox: (x2 y:(y2

. il Y S «

7 Object-Oriented Programming 61

7.4.5 LEDs

As a very simple example for adding new compo-
nents to the system, we introduce the prototype
of an LED (light emitting diode). This receives USSR TS,
two costumes for the values 0 and 7 as well as &
switch to costume value1

one input. Because the input is familiar with the =%
system, the LED can fully rely on them and limit S E o e

itself to what LEDs do - light up. Nothing more
can be done.

7.4.6 The Interaction of the Components

The activity is to pass through our network in a wave-like manner in a feed-forward pro-
cess: Each part notifies the connected parts and calls their operate method when some-
thing has changed. For example, if an output socket is located on a switch, the output's
operate method is called when it is clicked and therefore changes its value. This in turn
activates all connected inputs. Each of these inputs calls the working method of the gate
on which it is located - but only if its value has changed. If not, the wave is stopped here.
So far, the gate can only be a NAND. It waits its switching time, reads the values of its
inputs and activates the output - etc.

We take the operate methods of input and output as examples.

script variables ' oldvalue

set oldvalue | to (TN

script variables | i

if - not<limy anchor

set value |to]
else

set value to value of"'m] anchnors

=

R volve -~ il 4
set value |to [

else
set value |to

launch § 12T

9\ show yourself

repeat until ' ‘i > length of ‘connections

7.4 A Digital Simulator 62

7.4.7 Tasks

1. Create prototypes for the following gates according to the model of the NANDs:
a: an AND b: anOR
c: aXOR d: an Not-OR (NOR)

2. Create a prototype for a NOT gate. Is has only one input and one output.

3. Create a prototype for a clock. The clock frequency should be adjustable.

4. Create a prototype for RS-FlipFlops (RS-FF). Inform yourself beforehand about how

they work.
5. Create a prototype for JK-MS-FlipFlops (JK-FF). Inform yourself beforehand about

how they work.

6. Our gates react only after a switching time which can be different. Why actually?

8 Graphics 63

8 Graphics

Contents:

e simple turtle graphics
e recursive curves

e acceleration of output

e implementation of JavaScript functions

8.1 Line Graphics

In Snap! each sprite has a (virtual) pencil to draw on stage. The blocks for this can be found
in the Pen and Motion palettes. In the first one the penis controlled, i.e. raised or lowered,
pen color and width are adjusted, ... The second one contains the commands for moving
the sprite. In this movement, the pen leaves traces, which form the generated line graphics
- and which can be further processed as pentrails.

If we choose the already known "pen" as costume, the following script creates a simple

circle.

The example demonstrates the effect of the warp block. While
without it the pencil draws the circle quite comfortably, the fin-
ished circle appears almost immediately with warp block. The
reason is that in the first case, the state of the system is shown
again after each block execution, whereas in the second case
this is only done at longer intervals. The difference is "dra-
matic". Similar acceleration can be achieved using the Turbo
mode option in the Settings menu.

With the help of turtle graphics, some of the familiar recursive curves can be drawn very
elegantly. We start with the snowflake (or Koch) curve. It is created by repeatedly putting
a triangle in the middle of a side until the side is too short for this process. In this case, the
side is drawn as a straight line. A snowflake is created by assembling an equilateral "trian-
gle" of three such sides.

Pen palette

Motion palette
turn & @B degress

tm'n S_’:;. .B degrees

| point in direction kS
ﬁ-nin'ltmnaﬂls
[gotox @ v: @

ga o

| glide @B secs to x: @ v: €
| change x by GED

set x to

| change y by &ED
:sélyha

.'xp-nﬂ'ﬁm

W v position
B direction

I+ Schneeflocke

Language...
Zoom blocks...
Stage size.

O Input sliders

& Turbo mode

O Visible stepping

8.1 Line Graphics 64

draw snowflake side of length n

n<?2
true false
draw line of draw snowflake side of length n/3
length n
turn by -60°

draw snowflake side of length n/3

turn by 120°

draw snowflake side of length n/3

turn by -60°

draw snowflake side of length n/3

The process can be translated directly to Snap!:

the snowflake curve

move (N steps

draw snowflake side 'n /6

.fumb@degrees
Bmwmowlhkeside‘ n /6

bt:rndmdeqrees
Dmmmﬁh&eside n /€ \

To construct the Hilbert curve we use a version according to Laszlé the generator
Boszérményi®, It is one of the area-filling curves, which as a gener-

ator has a kind of box. The corners of the box are located in the

centers of the four quadrants of a square. In the next step, this box

is reduced by half and four versions of it are rearranged in the quad-
rants in mirrored or rotated versions. Finally, the smaller boxes are

connected to each other as shown on the next page. its position in

In the BOsz6rményi version, the boxes are marked with A to D de- the square

pending on orientation and direction of rotation.

Ail — Bil Cil H; DiZ

Y > —

20 http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/10.%20Rekursive%20Algorithmen.pdf

8 Graphics 65

The Hilbert curve is composed of these elements by starting with A

and "twisting" the other elements. Parameter i specifies the the scaled-down
recursion depth and thus the size of the elements. It is "counted copies and their
down" to zero. connections

point in direction K
move length steps

Ali -G

point in direction

move (length steps

»

point in direction EEHE

point in direction point in direction @I

move (length steps move (length steps

r r

point in direction G point in direction (K
move length steps move (length steps

i -

The call takes place as described after the sprite is sent to the starting point right-up. The
final length of the sections to be drawn is determined from the recursion depth - and then
it is drawn. Here too, the effect of the warp block is drastic.

(LRGBS 160 B
’ S;et recursion depth | to [
’ set length | to LY

repeat recursion depth

8.2 Pixel Graphics and RGB Model 66

8.2 Pixel Graphics and RGB Model

Contents:

e single pixel access

e RGB colors

e implement your own pixel graphics library

Turtles draw on stage, but pixel graphics are only possible on costumes of sprites. This is
not a big limitation, because with help of the pentrails block the current state of the stage
can be transformed into a costume, which can be drawn back on stage if necessary. Draw-
ing on costumes has the advantage that JavaScript commands related to this area can be
used without knowledge and consideration of the rest of the Snap! program code. If re-
quired, you have a small playground where you can write programs in the text-based lan-
guage JavaScript within the graphical environment of Snap!. This also makes sense if, for
example, blocks are missing or if speed is important. We want to implement pixel graphics
in two ways: first using the pixels library provided with Snap! and then directly using Ja-
vaScript blocks.

8.2.1 Pixel Graphics with the Pixels Library

We import the pixels library (File = Libraries = pixels) and get some new blocks. The
palettes result from the block colors. These blocks allow us to access the pixels of a cos-
tume.

First of all, we need a costume: beautiful white and big. We set the stage to 800x600 pixels copy of D>
and get a copy of the empty stage. So, we know the dimensions of the costume - just 800
x 600, and after creating the corresponding variables we have found the beginning of our show picture B
script. In the copy of the stage costume we find the individual pixels in form of a long list,
which contains both the RGB values of the costume and the transparency. pixels in >
'm_mD | e
& || = = = =
R R
Another way to get a corresponding costume would be to create it in a . R : “: “:
graphics program as a white rectangle and import it. As a third possibility :E % 5 5 E
we will write a small JavaScript method. = 5 5 ~’5 5':
Now we can manipulate the values EE ‘ 5: 15 HE
of the list pixels. As an example, we .. = = = =
set the green and blue values to I e
zero. Since 480000 values have to S
be changed, the use of the warp :; T T

block can do no harm.

8 Graphics 67

Up to now, the changes have only taken place in list pixels. They still must be FRSERERE = mgamas = e

"added back" in order to get a visible change. If you want the change to influence
the stage, you can copy it with the m - block.

The pixel list is well suited for counting colors in a costume, for example. It's not so easy to

switch to costume ' costume

access individual pixels given by coordinates. We therefore write two blocks to set or read
the RGB values at a (x|y) position.

setRGB r # = 255 getRGB from pxis :

y#=-1 in

script variables ' pixel

replace item | | of (pxls with

The setRGB block can be used to draw very nice color gradients, e. g. the RGB cube with
the front, top and right side.

The RGB colour cube is composed of three sides.

draw front side on ' costume 3> draw top side on costume -

script variables r g b script variables r g b

set 1 | to FEJ
set b [to (]
repeat €3

set g tofj

setRGBr (g (b ati [P + g setRGB(r (g (b at/(@IB .7 a) +(b /€D & -(b)/ D

I on (costume
change 1 |by & e =
ange g . f

change ¢ by &P

switch to costume | costume ¥
switch to costume | costume

draw right side on | costume 3>

_f:cripl variables r g b
warp

§et I CN255

'set b to (]

set 1 | to [

setRGB (1 (g (b at| @XP +(b J/ &D

on (costume

change 1 | by &P

switch to costume | costume

8.2 Pixel Graphics and RGB Model 68

set costume | to/ produce costume

gotox: P v: €D
(iraw front side on costume

draw top side on ' costume

(iraw right side on ' costume

8.2.2 Pixel Graphics with an own Library

We want to create blocks using the JavaScript function block, which we use to exploit
some of the graphical features of JavaScript.?! First, we create the capability to "inflate" an
existing costume to a desired size. Since all old content will be lost in this change anyway,
we fill the resulting rectangle with white color.

set size of | costume > to (x # y #

JavaScript function (2y A M
costume.contents.width = x;
costume.contents.height = y;

ctx = costume.contents.getContext('2d");

.beginPath();

.fillStyle = new Color(255,255,255).toString();

.fillRect(@,0,x,y);

.closePath();

.stroke();

Sometimes we need to know the dimensions of a costume, but we don't necessarily know
them. So we create the capability for this.

get width of costume 3>

get height of (costume 2>

"

JavaScript function (29 |) { JavaScript function (B) {

call fivar ctx = costume.contents.getContext('2d');
return costume.contents.height;

call fvar ctx = costume.contents.getContext('2d');
return costume.contents.width;

21 The pixels library provides good templates for this.

8 Graphics

69

In this costume we again want to be able to access single pixels .

getRGB from

costume 2>

var ctx = costume.contents.getContext('2d");
data = ctx.getlmageData(x,y,1,1);
return new List(new Array(data.data[@], data.data[1], data.data[2]));

setRGB r # = 255 b # = 100

q # = 180

y#=1 on (costume 2>

JavaScript function ([F1 [8 ¥ EEMINY
ctx = costume.contents.getContext('2d’);
.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = new Color(r,g,b).toString();
ctx.moveTo(x,y);

ctx.lineTo(x+1,y);

.closePath();
.stroke();

) {

And while we're at it, we also draw lines, filled and empty rectangles and corresponding

circles.

line from xa # =1
color ‘r # = 255
width width # = 1

xe #

b # =

ya#=1 to
g # = 128

draw

ye # = 100

costume >

JavaScript function (5] /8 23 13 @ 11 [RN T
ctx = costume.contents.getContext('2d’');
beginPath();
ctx.lineWidth = width;
ctx.strokeStyle = new Color(r,g,b).toString();
ctx.moveTo(xa,ya);

ctx.lineTo(xe,ye);

closePath();
stroke();

xa # =1
r # = 255

and (xe # = 100

b# =100 on

fill rect between
ye # — 100

costume >

ya# =1

color g ¥ = 128

JavaScript function (] A R WA NI =W) {
ctx = costume.contents.getContext('2d');
beginPath();
ctx.fillStyle = new Color(r,g,b).toString();
ctx.fillRect(xa,ya,xe-xa,ye-ya);
closePath();
stroke();

x # = 100 radius # = 50 on

b#=0

fill circle
costume 2>

y # = 100
r # = 255

radius

color g#=0

JavaScript function (3] EXIH EEMN @A H) {
ctx = costume.contents.getContext('2d");
beginPath();
ctx.fillStyle = new Color(r,g,b).toString();
ctx.arc(x,y,radius,®,6.283185387179586476925286766559) ;
ctx.fill();
closePath();
stroke();

costume

y radius

These blocks are stored in a separate library (File = Export blocks...),
where we select which blocks are to be included. With this we can create

our color cube again by
replacing the setRGB
method with the new

set costume

version.

JFaw front side on ' costume

draw top side on ' costume

draw right side on ' costume

OATNT current costu

set size of (costume to &P LD

xa # =1 xe # = 100
color r # = 255

width (width # = 1

and
b # =100 on

draw rect between
ye # = 100
costume 2>

ya# =1
q # = 128

JavaScript function (I /81 B8 Y G 1 (O NN PR) {
ctx = costume.contents.getContext('2d");
.beginPath();
ctx.lineWidth = width;
ctx.strokeStyle = new Color(r,g,b).toString();
ctx.strokeRect(xa,ya,xe-xa,ye-ya);
.closePath();
.stroke();

radius # =50 on
b # = 100 width

x # = 100
r# = 128

y # = 100 radius
g # = 100

draw circle
costume >
width = 1

color

JavaScript function (1] I RN O A1 O O) €
ctx = costume.contents.getContext('2d");
.beginPath();
ctx.lineWidth = width;
ctx.strokeStyle = new Color(r,g,b).toString();
ctx.arc(x,y,radius,®,6.283185307179586476925286766559) ;
.closePath();
.stroke();

radius | costume

withinputs x y

Export blocks

update > with B

current costume

FUE

show picture B

getRGA from > at ED &B

setrGE EED EED €ED =t €D &P on >

draw line fromi D &P o EEP EED color ED EEP EED o >
width &

pixels in >

draw rect between &) €D and D EEPD color ED €D EED on >
width &I

fill rect between §B @B and EED EEP color EED CED EEP on >
draw circle §EED @D radius @D on > color EEP EEP EEP width [
fill circle [P GG radivs P on > color EXD & @

get width of >

get heighl of >

sat size of > 1o @ @

zeichne Vorderseite auf >

zeichne Oberseite auf »

HEN EOER

zeichne Rechieseite auf >

8.3 The Light of the Old Stars 70

8.3 The Light of the Old Stars

In normal galaxies, the young stars are usually "born" in the arms of the galaxies, while the
old stars throng in the centers of the galaxies. Since young stars tend to shine in the blue
range of the spectrum and old stars tend to shine in the red range, this can be checked
well. We choose several galaxy pictures as costumes. We copy the current costume into
the variable costume, create a pixel list called pixels and "map" a function red value > n
in..., which displays pixels with a red value larger than the parameter n as pure red values,
the other black. All these elements are now well known from other examples.

set - current costume) ‘

g—:-’_f to pixels in costume

For the galaxy NGC 5457 we get the following result:

With M1017 it works also!

8 Graphics 71

8.4 A simple RGB Color Mixer

For three color values red, green and blue, we want to represent the pure

green 50)
o ¥

= normal

[“blue m)

color channels as well as the mixed color with correspondingly filled rectan- - large
» slider
gles. To do this, we import the library with the JavaScript RGB methods and siider min

slider max...

generate three variables for the color channels, which we display on the import..

export...

screen in slider format. As maximum values we select 255.

We create a costume from the pentrails on stage and write a script for the stage, which
reacts on clicking (more exactly: releasing the mouse button on stage). If we now change
one of the sliders for the variables and then let go of the mouse button first on stage, e. g.
below the variables, the script will be executed. 22 It works pretty well.

The coordinate system of a costume is oriented differently from that of the stage: it has its

¢ —uD

origin in the top-left corner and the y-axis is directed downwards. So, we have to select the
position of the rectangles to be drawn in this coordinate system.

First, we draw a white rectangle that covers the entire stage. This deletes any old repre-
sentations. Then we draw three rectangles above the variables in its colors and, to top it
all off, a rectangle in the mixed color above all. Afterwards, as is customary now, the cos-

tume is switched.

fllredbetweenﬂﬂandcolor@@ 255 W

costume

fllrectbetweenmandmcolor red P &P on
costume

fill rect between and color) (green)P on
costume

fill rect between @) €I and €5 €D color € @ (blue on
(costume

fill rect between &P € and color (red (green (blue on
Lmu m gTeen J Lblue m costume

switch to costume (costume

22 The procedure corresponds approximately to the reaction to the OnChange event of other
programming languages.

8.5 Drip Painting 72

8.5 Drip Painting

One of the methods of bringing randomness into modern painting is to spray paint blotches
on the canvas with a brush. The impinging drops of paint are further split upon impact,
resulting in a random pattern. We want to simulate the drip painting process - and that is
not so easy.

We try to do this with a simple but computational very intensive approach: n random cir-
cles with slightly different colors are created within a rectangle, which become more trans-
parent towards the edges of the rectangle. This is the place where the ink thickness de-
creases. Since n is in the order of hundreds and we want to distribute a few thousand
drops per image, we transfer the drop drawing to a JavaScript function that can do this
very quickly.

As parameters we pass the coor-
dinates of the upper-left dot-
corner in the costume, the width

and height of the rectangle de- = r e oz o ro - o s Jeastume ln

var ctx = costume.contents.getContext('2d');

scribing the drop, the three RGB var radius = Math.min(br,ho)/4;
var xm = xa + br/2;
var ym = ya + ho/2;
color values and the number of s § e ap 1)
"partial drops". The function de- ! ctx.beginPath();
. . x = xa+Math.random()*br;
termines (as is now known) the y = yasMath.random()*ho;
dist = Math.sqrt((x-xm)*(x-xm)+(y-ym)*(y-ym));
H _ if(dist<radius) crad = Math.random()*radius;
2D graphlc ContEXt and CalCU else crad = Math.random()*5*radius/dist;
. .Fill! le = 1 +50- " h. dom(), g+5@- *Math. i ,be50-) h. d . i ;
Iates a rad|us for the core area Of :::.s"ot::t;le Ze:ti?é;i;t;ge?eu Math.random(),g+50-10@*Math.random() 50-100*Math.random()).toString()
alpha = 1 - Math.sqrt((x-xa)/br);
the drop. Afterwards, the coor- if(alpha < 0.01) alpha = 0.01;
ctx.globalAlpha = alpha;
dinates Of the image Center are ctx.arc(x,y,Math.abs(crad),@,2*Math.P1);
ctx.fill();

ctx.closePath()

determined, and n drops are
ctx.stroke();

drawn whose positions, radii, e

colors and transparency are se-
lected randomly.

A strongly enlarged "drop" will
look like this:

8 Graphics 73

We now distribute several thousand of these drops on the
canvas - and receive an optimistic, abstract picture of spring-
time.

g\otox:oyzo

switch to costume (| costume

o ik oo €8 o (ot vt o1 coome_ T80

ick random €@ to (it b ot comome AL

(pick random @[to [P ' pick random ELP to P color

| pick random) to @) | pick random P to P

(pick random) to @) on costume with pick random &P to LD
particles

F—~

switch to costume (costume

i

But of course, we can also make the color distribution depend-
ent on the position - and get some red and a lot of blue.

With some green to go with it: Untitled 37.

And of course, you can also become braver:
balancing act

8.6 Edge Detection 74

8.6 Edge Detection

In order to recognize objects in an image, it is often helpful to emphasize the boundaries
of these objects - the edges. A possible method for doing this consists of the steps 1) con-
version to a grayscale image, 2) conversion to a black-and-white image using a thres-
hold value and 3) edge detection in this black-and-white image. The first two steps can be
carried out relatively quickly with Snap! using the Map function, and the third one re-
quires a lot of computing power, so there are plenty of opportunities for coffee breaks. Or,
after we have developed the procedure in Snap!, we transfer this task to a JavaScript
function. Edge detection is a preliminary stage for object recognition. The recognition of

the license plate of a motor vehicle on a video image may be an example.
We look for a picture with visible edges and load it as a costume of our

. . . switch to costume house
sprite. Afterwards we save costume and pixel list (as already done be-
fore) in the variables costume and pixels. The width and height of the

image is determined with the functions get width and get height. set pixels |to pixels in (costume

2"

ST T GO | current costume

.. width t width of (costu
This image is to be converted into a grayscale image. We can achieve et " Gl 2 e

this step-by-step by editing the individual pixels - a typical task for the S\et height | to get height of (costume
map... over function. This requires a function to be applied to the in-
dividual list elements. We call it color of... = gray. It calculates the
mean value gray of the three RGB values and assigns them to the

three color channels. It leaves the transparency value unchanged.

set ingray |to map | "color of a— gray b pixels

update (costume with (in gray

switch to costume (costume

Since (in this case) 172800 pixels have to be edited, switching to the
turbo mode of Snap! or using the warp block is worthwhile.

We want to create a black-and-white image from the grayscale image.

To do this, we specify a threshold value. All gray values greater than
the threshold value are set to white, the others to black. For this we
write a function which is executed by map... over.

8 Graphics 75

In the black-and-white image, some repair work should be carried
out: single isolated points should be deleted, line gaps closed, etc.
(see tasks). That's what we're doing without here. In the last step, we
look for edges in the black and white image. To do this, we examine
the area around each pixel. If all dots have the same color as the pixel,
this is located within an area and is drawn white. If there is at least

By wis o e | one different pixel,
';im we have found a bor-
B der pixel and color it
black. Because pixel
value changes affect

the neighborhood,

the changes are cop-

set value1 | to item D of ‘getRGB from (pixels at (x (y
: ied to another list

copy. Finally, this list
is assigned to the var-
iable pixels.

- ———
set different | to < @ faise

| set difierent |to < true @ AW g

E' .'.-.,.",- -,-, : .-

{semceooom x (y

Isetnceﬂi)t&)

update (costume with (copy
switch to costume (costume

8.7 Tasks 76

8.7 Tasks

1. a: Find out more about the C-curve on the Internet.

b: Try out some steps to construct the curve "by hand".

¢: Implement a script to draw the curve by Snap!.

d: Proceed accordingly for the Dragon curve, the Peano curve, and the Sierpinski
curve.

2. Display the RGB cube from a different viewpoint so that the three previously hid-
den sides become visible.

3. If you want to try some JavaScript: create color gradients and the RGB color cube
in a JavaScript function.

4. Create blue color excerpts from galaxy images and check the statements about the
young stars.

5. Change the color values iteratively, i.e. without the map function, by accessing the
individual pixels. Measure the execution times for different procedures.

6. Some painters apply the colors with a spatula. Create "spatula images" that can
"leak" in one direction and contain multiple colors. Create random pictures with a
spatula.

7. a: Inblack and white images, delete isolated pixels.

b: If you delete all border points in black and white images (the edges "melt down")
and then add them to all border points again - or vice versa - you can delete single
pixels, close gaps in lines, etc. by alternating and if necessary repeating the proce-
dure. Implement the procedures and test them.

8. If you want to program in JavaScript:

a: Implement the conversion of grayscale images to black-and-white images as Ja-
vaScript function. The threshold value should be given by a variable in slider repre-
sentation.

b: Implement the edge detection as JavaScript function.

9. Extrasolar planets are usually discovered when they darken their sun a little passing

between their star and the earth. Get a picture of the sun and let a black circle, the
planet, pass in front of the sun. Count the number of visible bright pixels and dis-
play the results of the planet transit in a diagram.

9 Image Recognition 77

9 Image Recognition

The following three examples illustrate a sequence in which some of Snap!'s abilities for
image processing are shown as the level of difficulty increases. Problems have been chosen
that provide access to the current discussion of digital media. They are therefore relevant
for the field of “computer science and society”.

9.1 A Barcode Scanner®

Contents:

o different objects and communication procedures
o simple lists

. . . the "laser"
e simple algorithmic structures

e scopes of variables and methods

We want to analyze a barcode (barcode) as it is used on the labels of
goods in a supermarket by means of a "laser" (a red dot) and convert it
into a character string. First of all, let's take a look at the planned setup,
but don't overlook the very small red dot on the left side of the work-
space - that's the "laser"!

What is an EAN code?

12347 5670

The European Article Numbers (EAN) code is available in different variants. Here we con-
sider the EAN-8 code, which consists of 8 digits, the last one representing a check digit. 2*
The numbers are represented by four black and white stripes of different widths. The space
between two black lines is also part of the code! To the left and right of the barcode there
are two black and one white stripes in between as a limiter. The center is marked by five
such stripes. All have the width "1". The code has been selected so that all digits in total
have the width "7". We will not go into any further details here.

To determine the coded numbers, the laser point is guided from left to right over the code.
He "measures" the positions of the color changes and enters them in a list. From this the
line widths are calculated. Since the first three lines have the width "1", we can determine
this value quite well by averaging. The other line widths are multiples of this unit. In each
case four dashes result in the code of a number, which we determine based on the table.
The procedure can be briefly summarized in the form of a Nassi-Shneiderman-diagram.

2 partly from E. Modrow, The SQLsnap supermarket, Scratch2015 Amsterdam
% see e.g. https://de.wikipedia.org/wiki/European_Article_Number

EAN-8-
Codetabelle

cipher

Code

0

3211

2221

2122

1411

1132

1231

1114

1312

1213

IO N|[OO(UV| BRI W|N|

3112

9.1 A Barcode Scanner 78

determine the x positions of the edges of the black and white lines

calculate the line widths, delete the markers

calculate the eight four-digit codes

calculate the EAN code

Implemented as Snap!-script of the laser we get:

v

PRISE G] T S =
when I receive begin

set EAN-8-Code | to IR
go to x: €U v: €D R4

point in direction K ... | delete the old EAN-Code and go to the
starting position on the left halfway up ... v

If | get the message "start” ... 7

7/

v

... and work through my program.

To do this we press the button "Make a variable" in the Variables palette of Snap!, enter
the variable name EAN-8-Code in the pop-up window and marke this variable as local
("for this sprite only"). Since it is not used in any other object, we limit its validity to the
scripts of the laser. The variable appears in the variable palette. Because we are already
there, we also create three other variables with the names edges, line widths and encod-
ing. The check mark in front of the EAN-8 code variable means that the variable is displayed
in the output window. There we can change their appearance in the context menu (right
click on the variable). The first block under the variable name set <variable> to <value>
is dragged into the script area. Using the small black arrow, we can select a variable iden-
tifier visible to the laser and enter a value for it. If we click on the block, it is executed, and
the variable gets the desired value, which is immediately visible in the output area.

After these preparations we must start to solve the real problem. One thing we have to
teach the laser in any case: finding the next black line. We switch to the costumes area and
draw a small red dot as a new costume - the laser dot. Alternatively, we can create the
costume in a graphics program, save it as a png file and drag it to the Costumes area.
With the help of the touching <color> block from the Sensing palette, we can now check
whether our laser sprite touches the specified color. This color can be selected from the
Snap! window or from the color box that opens after clicking on the color field in the block.
We use this block and a second one, which determines whether the edge of the working
area has been reached, as a termination condition for a loop (from the Control palette) in
which the laser sprite is moved one step to the right at a time.

blocks of the Variab-
les palette

Make a variable
Delete a varizble

EAN-8-Code|

i forall sprifes o for this sprite only

OK | Cancel |

o normal
s large
o slider
slider min. .
slider max...
import. ..
export....

raender
strichbreiten
codierung
EAN-8-Code

9 Image Recognition 79

When testing this block, we find that
the laser sometimes does not move at

repeat until - < touching ? _or touching edge ?

move)P steps
=

all. During repeated overflowing of the

strokes it will happen that the laser touches a white strip on one side, ~ = S ey

but on the other side it will still touch a black strip. After all, it has an /st

extension, albeit a small one. We are therefore making sure that it
. . repeat until * - touching ? _or touching edge ?
advances to the point where it no longer affects black areas. Then he \
move steps
runs off. (1]

After thoroughly testing this script, we pack it into a separate method, a new block called
go to the next black pixel, which is labeled as local because no one else needs it. (How
this happens is described in 2.7.1.) After that we create a very similar method, go to the
next white pixel. The comment blocks can be found in the context menu after right-click-
ing on the script area.

.,

9 go to the next white pixel

9 'go to the next black pixel

repeat until' not touching ? v repeat until ' not ' touching JJj ? v

if necessary, leave last color If necessary, leave the last color

move P steps move P steps

= —

repeat until’ < touching ? or touching edge ? 4 repeat until' < touching [lj ? or ' touching edge ? v
Continue to black or at edge Continue to white

 move & steps move) steps or edge 7
We test the interaction of these two methods in detail. e o=

Afterwards, we make sure that the value of the variable s e =

edges is an empty list (set <edges> to <list>) and that | | geeresapssemre | delete old values
the x-position of the laser is added to this list (add <x- | =i e e -
position> to <edges>). We delete the last two values of K tehassatial search for the next border altemately 7

- . @ go to the next white pixel
this list, because they are generated when reaching the | =
add x position to (edges
border. We can observe the behavior of this script if we
. delete SR of (edges
mark edges with a small tick as visible. Since everything o ° -
delete of (edges Delete the last two values
works well, the script will be packed in a new block to de- because they originate from the
edge of the screen /

fine the margins.

9\ determine line widths
Now there are three very similar methods, each of which -
set linewidths to list

runs through the last list just created to determine the =
repeat until length of (edges =]

next values. We process the first values of the lists and

add | item @ of (edges — item B of (edges to (line widths
delete B of (edges

then delete them until we are through.

9.1 A Barcode Scanner 80

First of all, we calculate the widths of the
scanned lines as differences in the values of
the edges list and save them in the line
widths list. We then determine the encoding
displayed by averaging the width "1" from

v
determine width "1”/

the first three line-widths and storing them

w
Delete start marker

in the script variable width 1, which is only
known within the new block. We delete the

v

initial marking and calculate the first 16 line-

—_— . sl Determine coding
widths for the first four numbers. After that g ses CTIT) . ko

, numbers 7
: delete I of line widths
we delete the middle mark and proceed ac- S =

w

cordingly for the second four numbers. The

Delete center

rest of the list is deleted. The determined val- marks

ues are stored in the encoding list.

o

. g - SES—— ~ — Determine codin,
add | round ([item @ of (line widths P/ width 1] to (encoding [Ipegiierems ’

numbers 7

delete @B of fine widths

delete B of (line widths

P —————r Now all what is missing is the decoding of the ~ Plocks of the Operators

. . I alette
numerical values in the encoding list. We de- p

o D clare again a script variable code for the new
block. This is repeatedly composed of four
delete G of (encoding

- S numerical values (with the join block from
: the Operators palette, which works with

strings). Depending on the value of the result,
we receive the next digit of the EAN code.

Our new blocks, which we can use like any
other command block on the laser-script
level, can be found at the bottom of the Var-
iables palette. The small marking needle in
front of the method names indicates that the
methods are local for sprite. In other sprites
they are not visible.

We create the barcodes with one of the gen-

< tue @

oo ford
(it T by B

erators for this on the internet and save them
as costumes of a new sprite, which we create

set EAN-8-Code | to(join EAN-8-Code [§

with the arrow button above the sprite area

~] (letter @@ of
R code - B5H 3 at the bottom-right of the window. We call {tength of [T

36 EA5.Coe 8 Ufoin (EAN-G-Coda) [} this Sprite Barcode. To switch between the [P

costumes, we create a global block showing a (unicode @ as letter

barcode (to show this way of communication e —
<is] a numbe: |2
between objects). This doubles the size of the is | identical to J 2

costume and puts the sprite in the middle.

(JavaScript function (i)

The block can be seen on all sprites.

9 Image Recognition 81

Our little project will be controlled by stage scripts. When the green flag is
clicked, the Barcode object is asked to display a new barcode - i.e. to change
the costume. This is done with tell <Barcode> to <show a barcode>.

liext costume

Since the block to be executed is declared as global, surrounded in gray and so
marked as a code, we can simply drag it into the previously empty slot in the &g tox: D v: &
tell block®. Then the stage sends the message "begin" only to the laser object. [tz [200 L
Alternatively, it could have sent this message to everyone. If only the Laser

sprite reacts, then this would have the same effect.

The last two scripts are used to initiate costume changes by pressing the space
bar and reading by clicking on the stage.

broadcast list [

25 Another way to call methods of an object is described in 2.7.3.

9.2 Project: Transit prohibited! 82

9.2 Project: Transit prohibited!

Contents:

e export and import of sprites
e access to pixels

e usinga library

e simple algorithmic structures

Modern cars have a camera that enables them to "see" and recognize traffic signs. We
want to try something like that. We search for the pictures of some common traffic signs
and scale them all to the size of 100 x 100 pixels with the help of a graphics program. After
that we drag them into the Costumes area of a Snap! sprite that we call Traffic sign.

As you can see, the signs are quite different. Therefore, one task will be to recognize the G ey
shape of the shield. We find round, rectangular and different triangular signs. Fortunately, / -’.'_‘--\.___\
we already have a laser from the last project at our disposal, which we will modify for the |: %)
new task. To do this, we export the Laser sprite from the barcode project to an XML file A e
Laser.xml (right-click on the sprite, click "export..." from the context menu) and import [u;--;m.m
this file into the new project either using the file menu or by dragging it onto the Snap!
window. In the Variables palette of the laser we delete all variables except for edges,
then we delete the local methods except go to the next black pixel. We open it in the
block editor (right click on them), drag the blocks to the script level and delete this method
too.

How do we distinguish the shapes of the signs?

You can come up with very different methods for this. We'll try this: The horizontal bound-
aries of the signs are defined in three heights and then the vertical ones at three positions.
Then we'll look at the results.

First the left edges ... then the right ones
set xvalue | to

set yvaue | to

add to (edges

set edges |to list

set yvalue |to EEJ

add

N

pass on the nghl

go to
' point in direction @I
[ﬁo to front

'

go to x: (xValue y: (yValue

point in direction EIED

... and correspondingly the upper and lower ones.

9 Image Recognition

83

The four scripts are put together and packed in a method determine edges. For example,

we get the following results.

Laser raender

Laser raender

1+ -
o B
15 -

length 15

Ui untere Rander: (8

Laser raender

|

1 -
SN
0 >
I |

That looks quite good - except for the stop sign. Its edges are suspiciously similar to a round
sign; we have to come up with something else. Perhaps a 13th "cut" at a suitable place
(here: fourth, in the list: fifth)? For that we can omit the right edges, because the signs are

obviously symmetrical. If we do that, we get for the "round" candidates:

Laser raender

9 LN -

11 -

b4 40 8
HED-
fengt 3

1[] untere Rander: &

Bl

Laser raender

Laser raender

The 5th list entry contains the value for the height 19 - and thus a measurable difference.

9.2 Project: Transit prohibited! 84

For the evaluation of our results we write a block defermine shape. This should be a re-
porter block that determines and returns a value - the shape.

e For rectangular signs, the entries 2, 3 and 4 should be approximately the same.
e«
€ avs off ¢ item ER) of (edges 47]

€ abs |of[item EE of (edges 2 item R of (edges <2

set shape | to
else

e The values of the triangular signs increase or decrease.
4 item @K of (edges =2 item EE of (edges
¢ item EE of (edges |2 item KD of (edges

set shape | to [QENNTEIZTRTNY

else

)
.

4 item @ of (edges 4 item EE> of (edges
¢ item EP of (edges |3 item P of (edges

set shape | to

e If we assume a round shape (the second and fourth entry should be abcut the same
size), then it is the octagon of the stop sign, if the third and fifth entry are!about the
same size, the rhombus of the priority sign, if the second entry is quite sma|l and oth-

erwise a round sign. And of course, errors can occur.

Jf item @ of (edges — item LK of (edges <H

Ui item ER) of (edges — item &R of (edges

set shape | to [TEEITIEN
else

U7 item @& of (edges <
\/ abs | of item K of (edges / €

set shape | to [LN

else

set shape | to [CINL]

else

set shape | to LU

Finally, a block comes to the script that returns the determined shape as a function
result.

report shape

9 Image Recognition

85

So, we have already limited the number of pos-
sibilities quite a bit, and we see that - at least so
far - we are getting by with the results for the left
margin. We write a local method shape? of the
laser that determines the shape of the just pre-
sented traffic sign. In addition, the laser is sent
"into the heath" and hidden so that it does not
disturb any further. His work is done.

For the meanings of the signs, the colors on the edge and inside are important. To analyze

them, we use the library Pixels, which we find in File menu = Libraries. This will deliver
new blocks that we find below the Make a block button in the corresponding palettes.

For the final determination of the type of traffic sign we simply want to count the number
of different colored pixels in the sign. Maybe that's enough. We leave this work to a new
object called Color Counter. This requires at least a copy of the current costume of the

[current costume)

traffic sign. We kindly ask them for the required data, which we store in a local variable

sign. In a second variable named pixels we save a list of the three color values and the

transparency of the pixels of the received costume. Since it has the size 100 x 100, we get

10000 entries.

In this list, the pixels outside of the actual tag have
the transparency 0, inside the value 255. The three
RGB values do not represent "pure" colors, but
mixed values, which are for example "predomi-
nantly" red. We change this with a method change
to pure colors, which sets the color values above
100 to 255, the other to 0. This takes quite a long
time with 10000 values, because the list is "re-
freshed" every time. For this reason, we pack the
operations into a warp block that does not update
the display until the end. The speed improvement
is extremely high.

Color counter sign

Color counter pixels 3
10000 A B C D
1173 237 23 36 255
174 237 28 6 255
1175 237 26 34 255
1176 238 49 54 255
"ir 251 210 212 255
1178 253 253 253 255
1179 253 253 253 255
1180 253 253 253 255
1181 238 235 236 255
1182 138 137 137 255

1"_ 1183] 0] 0 th"

repeat until . i > length of pixels
;etaPixel to item (i of (pixels
> [
replace item @K of (aPixel with

Ise
replace item @B of (aPixel with [J

< n
J

(& item G of (aPixel

el
¥ item @ of (aPixel >]

replace item @) of (aPixel with 725

U item ER) of (aPixel >

replace item EE) of (aPixel with P

else
replace item EE) of (aPixel with [J

replace item (i of (pixels with (aPixel
change i by €

9.2 Project: Transit prohibited! 86

Similarly, we let the "pure" colours count in the

9 count colors

picture: We will introduce a separate script variable for =i
. . L. red (green | blue black ' white | yellow cyan | magenta i
each of them, which we will initially set to zero. |

Afterwards we look at all pixels of the sign that have a [
. set red |to [J
sufficient transparency. For these, we analyze the RGB ||

green |to [
values and increase the value of the correct variables. == o0
Finally, we'll return a list of the results in which we'll Bk "’g
white | to [V
add the color names so that we don't get confused. B voson (0]
v cyan |to [
e = R ; ~ magenta | to [J
- — - to i
g s B repeat until - (i > length of (pixels
1 black 0 <
2 while T 1544 set aPixel to item (i of (pixels
3 e o e o 3
4 green 0 “/ T - =
item of (aPixel an
5 blue] N."em Qi of GREXED A =CC T
6 yellow . 1] ¢ item @ of (@Pixel =75y TILE item @ of (aPixel =73 3
7 cyan i} \ change white | by &
8 magenta 0

4 item @B of (@aPixel T and

item @ of (aPixel =pEj XLl item @& of (aPixel

£ item @ of (aPixel TULE item @B of (aPixel |- FE

change magenta | by &P

¢ item G of (aPixel

£ item @B of (aPixel =P TLLE item @K of (aPixel = P

{ item @B of (aPixel

€ item @ of (aPixel = " item @ED of (aPixel =

(;hange red by &P
else

4 item K of (aPixel
€ item @ of (aPixel =Y LLLE item @D of (aPixel =[]

hange green | by &P

4 item EP of (aPixel |

yellow

cyan
magenta

¢ item @ of (aPixel ' item @B of (@Pixel = B

t;hange biue | by &P
else
change black | by &I

change i

iStwhite SETLTLC
Iy’ biue
list magenta

9 Image Recognition 87

For easy use of the methods we write a global method colors? which initiates the appro-
priate operations.

colors?

set sign |to| ask Traficsign | for r

set pixels |to pixels in (sign

=

tell Colorcounter |to | § change to pure colors of Color-counter

report - 4 EiCE R IS (@ count colors of Color-counter

We leave the control of the objects to the stage. When pressing the space bar, the traffic

sign should change and when clicking the green flag, the analysis takes place. The Stage e o e

gotox: P v: &

next costume

object queries the results of the others and evaluates their data.

clicked
set resull | to [JEEEEATELD

set theShape | to| ask Laser | for

set theColors | to| ask Color counter | for (<

9\ evaluation

For the evaluation we use on the one hand the
determined shape and on the other hand the
counted color values. This can be done in a sim-
ple way:

The results are as desired.

if - (theShape = [(ENLTEIFTEEN

N

set h |to item @ of (1 =

, black pixels
transit prohibited == TR CYfconstruction site

AR TR el triangular-tip-down

set h | to item @) of (1=] %
white pixels

set resull | to SIGNEN

etc.

9.3 Project: Face Recognition 88

9.3 Project: Face Recognition

Contents:
e accessing single pixels
e using JavaScript

e more complex algorithmic structures

Face recognition is a good topic to discuss the social consequences of IT systems. There-

fore, we want to use the capabilities of Snap!for this purpose. For good reasons, passport
photos are strongly standardized: the facial posture is prescribed, ears must be visible, ... Peter
This makes facial recognition considerably easier. We therefore draw four faces that
roughly correspond to these regulations. On these "photos" we apply the already known

(and some new) methods.

We're looking for the face, and that's (nearly) "pink". Since the facial colours are different,
we first carry out a reduction of the color space. We find suitable limits of the (here) three

intervals by trial and error.

The procedure is well known from
r\reduction of the color space traffic sign recognition in the previ-
ous section - we use the Pixels li-

brary. The faces now appear very Paul

beautifully orange - regardless of
what they looked like before.

replace item R of (thePixel with]
replace item (i of (pixels with (thePixel

Hannah

9 Image Recognition 89

If we delete all colors except orange, only faces should be left.

“delete all but pink

script variables ' i thePixel q
ey v
repeat until' i > length of ' pixels

set thePxel to item(i of pixels

item @X) of (thePixel =

replace item (i of (pixels with |

So that we don't always change the original pictures with our procedure, we first make a
working copy of the current costume and delete it later on.

\Iook for the face

script variables ' n

add [copy of (2 0a< S 0UN to (my costumes
set n | to length of 'my costumes

switch to costume (n

set pixels | to pixels in current costume
reduction of the color space

TR current costume BV

O GO R G T G costume #

delete all but pink

update Eeil A LTHEN with (piels

switch to costume (518 2

In these faces we now have to identify the eyes, mouth, nose, etc. From the proportions
of the sizes eye distance to nose length, mouth width to face height, ... can be inferred on
the person.

How to find eyes?

They represent "holes" in the face, which must not be too large or too small. The right eye
(from the person's point of view) e. g. should be in the top-left of the passport photo. To
do this, we first need to be able to ac-
cess individual pixels in the image. We getRGB from | costume > at
do this by using the JavaScript-Block,
which we give the coordinates and the

var ctx = costume.contents.getContext('2d"');

considered costume as parameters.2®
data = ctx.getImageData(x,y,1,1);
We select the type of parameters as

return new List(new Array(data.data[@], data.data[l], data.data[2]));

described in 2.7.1: twice a number and

once an object.

26 There are other ways to do it.

9.3 Project: Face Recognition

90

We use it to search the upper-left image area
for a "hole". We analyze the area of 44 < x < 86,
89<y<121.

set y

to Y

set found |to< @ faise

found or {y J-I[F]

repeat until
to [§
to 75

set x

set value

repeat until ¢ {LTT TN 60

We pass the white area and stop at the first
orange pixel:

repeat until
set value |to item @) of (getRGB from current costume at x 'y

change x

repeat until - ¢ value

set value | to itemwol getRGB from current costume at x 'y

by €

change x

Was that
Otherwise it won't work with

really white?

~
if - not found

set x | to 8.l

We now count the white pixels horizontally in
the variable n ...

set n

to

set xp

set yp

set value [to item @E) of (getRGB from current costume at xp ' yp

by &9

to item @K of (getRGB from current costume at xp yp

by €9

change xp
set value

change n
J

If the gap was in the correct range (5<n<30), we
do the same thing horizontally.

if- ¢ n R36

ord n FAEN

set found | to

else

@ raise

set xp to round| x = n / €D |

set vae to item @E) of (getRGB from current costume at xp yp

If the size fits here too, it was an "eye".

look for the right eye

script variables

x Yy found ' value | xpos

@ raise

set resull | to

set y

to

set found |to

repeat until

@ raise

found or{ vy [FY

set value

repeat until € value |- 7L
set value
change x by €@

set xpos to €2

if (value > P

set xp
set yp

set value

€ value

repeat until

change xp | by &P

e[

set value

by &0

change n

ypos

xp 'yp

from left to right on the same hight
4

to item @E) of (getRGB from current costume at ' x 'y

or{ x 2 v
looking for white
to item @) of (getRGB from current costume at x 'y

w
save x-positon

b
count white pixels
to the right Y

to item @E) of (getRGB from current costume at xp yp

ord€ xp |/

to item @ of (getRGB from current costume at xp ' yp

s

fEL)<

set found alse
else

set xp [to round [x

set value
repeat until < “value
change yo | by €D

set value

set n

to

change yp

by G
set ypos (ul,—‘/

set value

repeat until value < K

change yp | by G
set value
change n | by §B

it {n LAY or €

set found |to < @ raise
else

set found |to

true @
set yy to round| ypos | n

set resull to list(xp (yp

not ' found

set x to @

by &9
by &9

change x
change y

{ ;epoﬂ result

to item @) of (getRGB from current costume at xp ' yp

no candidate for an eye

v

middle.

S &
search lower edge 2

to item @) of (getRGB from current costume at xp yp

b 4
count vertical white pixels

to item @) of (getRGB from current costume at xp ' yp

to item @E of (getRGB from current costume at xp yp

/

search in the

looking for pink

z

9 Image Recognition

91

The procedure is not very simple, but it is still feasible - above
all since we can develop it step by step, because the interme-
diate results are easily to show.

For the left eye we search the upper right area very similarly,
and the mouth should be in the lower half of the picture and
be larger than an eye.

With the nose we make it very easy for ourselves: it starts in
the middle between the eyes and runs to the first white pixel
- whatever that is.

look for the nose | xstart # ystart #

script variables 'x 'y value | result

set resull | o .lalse

= P8 O xstart

y

value

to P&

repeat until < value < K]

set value

change y

to item @) of (getRGB from current costume at ' x

1

repeat until < value > 7]

set value
change y

set result

to item @ of (getRGB from current costume at (X
L 1

to list (xstart (ystart (x (y

To check our results, we write a method draw line, which draws a line between two points

in the image - again as a JavaScript function. We transfer the coordinates of the endpoints,

the RGB-values of the desired color and the line thickness, as well as the edited costume.

draw line from ' xa # yva# o xe# ye# color 1 #

g# b# on | costume > width ' width #

JavaScript function (I [[[0 @ 0 0 0G0 @) € |

ctx = costume.contents.getContext('2d');

.beginPath();

.lineWidth = width;

.strokeStyle = new Color(r,g,b).toString();

ctx.moveTo(xa,ya);

.lineTo(xe,ye);

.closePath();

.stroke();
b | costume width

This allows us to easily draw small crosses into the picture:

draw line from | item @ of (point — &P | item @ of (point to

item B of (point. + &P | item @ of (point | color LP &EP P on

current costume width &

~

draw line from item @K of (point item @B of (point — &P to
item @D of (point, | item @B of (point. |+ &P |color £B &P P on
current costume width P

switch to costume (¢

Don't drink too much coffee while you wait for the results!

y

Yy

9.3 Project: Face Recognition

We calculate some ratios from the determined values and save
them together with the names in a list allAttributes. By
comparison with the currently determined values, the searched
person can easily be identified.

identification
script variables i n
30 05

to- . false
toH

set delta

set found
Browse all stored records. repeat until
set aftributes

Test the current record for consistency.

set test to

to 4

true @

set n

Compare all properties.

to item i

attributes

O B oW =

Table view

A B c D
Name Mouth - Nose | Nose " Eye | Mouth : Eve
Mary 1.075 0.9756 1.04878

Hannah 12368 0.77551 0.95918
Peter 111111 08 1
Paul 065789 0926829 0609756

s
OK'

found delta test

found or € i | length of (allAttributes |

of (allAttributes

item 'n of attributes — delta

¢ item (n of (newAttributes |4

+ delta

¢ item ‘n of (newAttributes |2 item (n of (attributes

Note failure. _sel test

change n by &

Person was found, show name.

set found to

set person

Otherwise, keep looking.

to < @ raise

true .

to item @K of (attributes

9 Image Recognition

93

The whole problem can be solved by combining the sub-problems. We assume that the
image of the person to be identified is on the screen. This is copied, transformed and the

changes are displayed. Then the original image is repainted.

face recognition
set turbo mode to true @

set costumeNr |to costume #

set person |te

look for the face

_r;el lefiEye | to ' look for the left eye

ﬁark leftEye

set rightEye | to look for the right eye

fnark rightEye

set mouth ' to look for the mouth

(iraw line from item EE) of (mouth item @) of (mouth to

item €K of ‘mouth item @K of 'mouth | color P =P P on

current costume | width &P

set nose | to
look for the nose

round | item G of (leftEye + item P of (rightEye |/ &P

R —— R ___
round || item @ of (leftEye |+ item @ of (rightEye |/ &P

draw line from item @) of ‘nose item @K of (nose to

item €K of (nose | item €K of ‘nose | color P =P P on
current costume width &P

switch to costume (11

set mouthTOnose | to

Jil item @ of (mouth — item EE> of (mouth
(Jil item @ED of (nose — item P of (nose

set noseTOeyes | to

AU item @D of (nose | — item €K of (nose | /

(il item G of (lefttye — item K of (rightEye

set mouthTOeyes | to

5407 item EED of (mouth — item EE of (mouth /
r S AR item @D of (leftEye — item B of (rightEye

set newAltributes | to

list I (mouthTOnose noseTOeyes ‘mouthTOeyes
identification

delete @EEED of ' my costumes

switch to costume (costumeNr

The four people are safely
identified.

9.3

Project: Face Recognition 94

9.4

Tasks

. Find out about the calculation of the check digit in the EAN-8 code. Use a few ex-

amples to test whether you have understood the procedure.

Let the barcode scanner check after each reading process whether the check digit
has the correct value.

Extend the barcode scanner by further options: Codes can also be read "back-
wards", and there are also longer codes, e. g. EAN-13.

: Get the manufacturer's and product numbers from the barcodes you have read. En-

ter the results in plain text on the basis of the corresponding data: "Honey from the

bee-farm", ...

Develop a barcode generator. It is given a sequence of numbers and calculates the
check digit from this and prints the barcode. This can be done, for example, with the
help of appropriate costumes, which are printed on the stage in the right places
using the stamp block from the Pen palette.

Have foreign road signs identified. Use the traffic signs to determine where a photo
was taken.

A speed warning device is used in a car to determine whether the speed limit has
been exceeded by means of traffic signs.

Intelligent scales (smart scales) contain a camera to detect fruits. Start with fruits
you have drawn and then move on to real photos.

German car license plates contain a character set that is very suitable for image
recognition (uniform character width, ...). Develop a procedure that recognizes ve-
hicle license plates. Discuss the consequences.

Face recognition can be found today when you log on to a computer system, in
cameras and smartphones, in social networks, ... Find out more about other appli-
cations and discuss the results.

In some countries, a system of social credits is being introduced or the introduction
is discussed. Find out more about the system and discuss the consequences of ex-
tensive video surveillance.

10 Sounds 95

10 Sounds?’

Contents:
e playing and recording sound
e visualization of sounds

® music

Similar to animated graphics, it is a bit difficult to describe how sounds are handled. There-
fore, only the different possibilities are presented here - with the urgent recommendation
to try out and experiment with the "code snippets".

10.1 Find Sounds

First of all, you need a sound in WAV format. To do this, you can either import the file
using the File menu (File 2 Sounds...) ...

.... or, as usual, drag it "from outside" into the Snap! window ...
Import | Cancel o

... or just record it yourself. This can be done - for short recordings - directly using the

Snap! sound recorder on the Sounds page. For longer recordings you should use one of
the common tools.

R | For further editing we load the library Au-

R T dio Comp from the File menu. This means

I—siwﬁ that the adjoining blocks from the Sound, ———————
Pen and Sensing menus are available to DIOIC———

| rest for qER beats see) _canel)
 play note @I for QEP beats

|;el instrument to g

us.

Below we work with the file
soundtest.wav, which we have created in
| change tempo by €1 one of the described ways.

(36t tempo ta D bpm

W (fempo

(duraiion | of >»

| vlay B at GLIEID Hz
(RS Hz for @) secs at EZIEy Hz sample rate
(‘sound named [

 stage width
‘stage height

[plot >

27 Following the example "music" by Jens Ménig

10.2 Processing Sounds 96

10.2 Processing Sounds

If there is a sound on the Sounds page, it will be displayed in the corresponding blocks. — JFTFFisssseg:
The easiest way to try this is to use the blocks for playing sounds.

|:lhvsn|md soundiest | until done

For further processing we need a representative of our sound. The block sound named pra—

<soundname> is meant for this purpose. If you edit this, you have found a small example

of how to use the sound blocks. (gl

| duraion | of sound named SR
play ' sound named JULCH] at €EUIES Hz

The of block for sounds provides access to other sound properties. In particular, its sam- o
length

ples?® can be determined as a list. These are needed if you want to actively edit a sound. numeer of channele

sample rate
samples

For example, we can influence the playback speed of the sound by changing the sample
rate. The Hz for... block generates samples with the specified properties, e. g."pure tones".

2 A B Cc D E F
1 0.00142436¢0.0012207400.0008545140.00082399¢0.0011291840.00128"
a_nn.nu.um;m ﬂgm .' 4! __ 5

| sampies | of - nmed

IR Hz for &P secs at LIRS Hz sample rate
plot | sound named FINLCH]

The visualization of the sounds is interesting. With the plot <sound> - block we get a
graphic of the sample on stage. %

28 https://de.wikipedia.org/wiki/Abtastrate
2 The same applies to (almost) all other sound blocks. If you edit them, you will find examples of Java-Script for
example.

10 Sounds 97

10.3 Making Music

A sample consists of a list of numbers and stereo sounds from a two-element list of samples
(see above). As a result, sounds can be manipulated with the usual list operations, such as
inverting, changing the value, ...

Songs can also be composed of notes, even very comfortable. The play note @GRS for @EP beats
note is selected on a piano keyboard. This can quickly be used to C (60)

compose songs ...

LadLiLdLLILLL

. Fuchs, Du hast die Gans gestohlen

play note IR) for k) beats
play note LI for LXP beats .. and to play it on different
play note gZE) for XJ beats instruments and in different tempi.
play note &R for kP beats
play note &) for &P beats
blay note R for {EP beats
play note &R for P beats
play note) for P beats
play note & for KPP beats
blay note &R for {EP beats
play note) for kP beats
play note & for P beats
play note) for)P beats

If you play several notes in parallel, chords are || jaunch " BT o I TR)

created ...
play chord ' all but first of (data for beats beats

set instrument to €E)

set tempo to P bpm
l;uchs, Du hast die Gans gestohlen

play chord (data : for (beats # = 0.5 beats

if - length of (data =)

play note item @ of (data for beats beats

play chord ' list (Y (& 4 B for &P beats

... and these songs can be played and varied ...

if length of (song
... using a suitable list of pairs of (note, duration).
LE is item @ of

if is item &K of [T a number

play note item & of (1= ‘i Ui song for

rest for item @ of (- &K i song | beats

play song ' all but first of (song

10.3 Making Music 98

when clicked
set two basic chords =T ST T e e
set maj (to list (Y G G G @&

set min | to list] CE G & @
describe bass accompaniment and song by [F e

lists of tone / duration pairs <43 ool ol
72 [anflist 55 epY st o7 [T
ZGRD (CIND (I
St 55 [T ap g list 59 [

set song to

list R

st 7 ngist s

ISt 5 (57 maij

|5 min | (K i i list min/i

7"_‘”!} [5e map | @ + €D over (| maj

list

<map| @ + &B over (maj |#
ist 75 7 anllist (72 |5 4o list 75 [7 «nf Vst
CARERD (X mai JED |

[5e map | @ — &D over (min |}

make a few adjustments Bl SRORT
set tempo to gEP bpm
set instrument to)
to play the song, prp——
the chord play chord maj for &) beats
rest for gJ) beats
forevev
and now play the song and bass accompani- kel Rl T B 20
ment over and over again with variations s s e e

if [of | true |
' launch
both play in parallel because of the launch set instrument to (pick random @B to €D

and have a short break

e
block play song | song bass transposed by | delta mod §E&3 | €29

play song song song transposed by delta

10 Sounds

99

10.4 Project: Hearing Check

A hearing check tests the hearing ability at
different frequencies, but also at different
volume levels. In a simple case we play tones
of increasing frequency until the respondent
hears something. Then he (or she) presses
the space bar. This frequency min is noted.
After that, the frequency is increased until
nothing more is heard. This frequency is also
stored.

Make sure that the volume is not too high!

Snept B Your Own 81 X/ A Snapt Buiid Your Ovn B/ '\

< Cc \@ Nicht sicher | snap.berkeley.edu/snapsource/snap.htmi#

< touching
touching |2

color | is touching |2

ask [EEIREIEILY and

W (iouse %
W (mouse y

mouse down?

rp—— | change frequenz | by GLD

dstance | to ‘ set mn_|to!
reset timer
MW timer

cosume# | of

my neighbors

url

turbo mode?
set turbo mode to

10.5 Tasks 100

10.5 Tasks:

1. Define test conditions that lead to comparable results.

2. Change not only the frequency, but also the
volume. Since our sounds are described by [EEliiii ol
samples, the volume can be changed by simply =5 BRI 440 VEZATIN 1 20 1 Hz sample rate

-

multiplying the sample values. For example, in FUrsg - S ® * @I over (@
the following script the volume is increased un-

til the space bar is pressed. Attention: The vol-
ume should not be too loud!

set b | toCD)

repeat until. key space pressed?
play (b at ZIIE2 Hz

set b (to map| @ X §¥P | over (b

3. Measure the cut-off frequencies and the volume per frequency required for lis-
tening. Create a diagram based on the data.

MAKE SURE THAT THE SOUNDS ARE NOT TOO LOUD!
upper frequency limit: 4500

T actua frequency: 8o KL

4. Make an excursion to an ENT practice/clinic. Present your diagrams and let your-
self be explained if and what you can read from them. Find out about the causes
of possible hearing loss.

11 Project: Electrons in Fields 101

11 Project: Electrons in Fields

We want to use the knowledge we have gained so far to realize a small project in the field
of - well - physics: Electrons move in a tube with a capacitor built into it. This tube is placed
inside a pair of Helmholtz coils so that the electrical and magnetic fields are perpendicular
to each other. Both are reasonably homogeneous. This is one of the standard high school
experiments. All components can be developed independently of each other in different
groups and in very different ways. Only physics stays the same. That's the way it is with

physics.

[Electron source Ub {170 |

— =+

(Magnet Coils | [JF00 |

Capacitor U u |
L—‘-/

Hectron Hlectron: Capacitm MagnetC Efield B-Field

11.1 Electron Source and Set-Up

Since this is a standard experiment, the required devices should be found in the physics
collection. It is therefore a good idea to construct the experiment in a clearly arranged way,
photograph it and extract the partial devices from the images in such a way that they can
be used in the project. Here in the script only simple drawings were made instead. We
need images of the capacitor, the coils, the electron source and - for illustration - the ge-
nerated fields.

First of all, we enlarge the stage from Snap! to 800 x 600 pixels. There is a menu item in
the Settings menu of Snap!. Then we draw a simple picture of an electron source and
import it as a costume of the current sprite.

102

11.1 Electron Source and Set-Up

After starting the program with the green flag, our electron source is sent to its place in
the correct costume. If necessary, we can also move them to another place in the experi-
ment. The device has only one characteristic feature: the momentary acceleration voltage
of the emitted electrons. To do this, a local variable Ub is created and displayed on the
stage. In the context menu of this display (the monitor) you can select slider and set the
minimum and maximum value. With the slider, the variable value is changed between
these values in the running program. We choose a range between 0 and 250 volts.

11.2 Capacitor and Electric Field

The capacitor in the tube has a plate spacing d, which we set fixedly so that a realistic
electron movement results later on. Once it has found its place, it runs continuously until
the program terminates. If we set the applied voltage U to zero, it should disappear so that
we can examine movements only in the magnetic field - it would only disturb. For U and d
we set up local variables. The capacitor informs the electric field E-Field about its current
value. This is done by setting the value of its local variable E with the value U/d in the
context of the E-field.

In fact, the following applies:
U
E=—
d

After that it sets the ghost-
effect of the electrical field,
i.e. its transparency, to a
value that depends on the

applied voltage in the same >

without applied voltage
, the capacitor disappears

way. The smaller it is, the
more translucent appear the
arrows that symbolize the
electric field.

{+ electrons in fields

Language...

Zoom blocks. ..
Stage size...

O Input sliders

C Turbo mode

O Visible stepping
T Long form input dialog
O Plain prototype labels
O Clicking sound

I Flat design

O Thread safe scripts

C Flat line ends

O Codification support
&= Inheritance support

switch to costume electron-source
set size to P %
g0 to x: v: @

= normal
= large
s slider
slider min...
slider max...
import....
export...

-

Important: the field
of the value in set
<variable> to
<value> must be re-
ally empty so that it
can be replaced by
the specified size!

v

calculate current electric

EField ~ >

visualize electric
field strength

field strength S

VZ

11 Project: Electrons in Fields 103

The electric field, another sprite of its own, simply consists of e e €3

a costume containing a series of parallel arrows that fit

is set by the capacitor as described. The voltage of the
capacitor is displayed as a slider variable on the stage.

Magnet Coils | “

=)

between the capacitor plates. It has a local variable E, which _

Capacitor U (20

11.3 Helmbholtz-Coils and Magnetic Field

The Helmholtz coil pair is symbolized by a simple circle on the stage.3° It contains a local
variable B, the magnetic flux density that results for commercial devices to

T
B =0.008—-1 where I is the electrical current through the coils. We show them as a

slider variable between 0 and 10 (ampere). That's pretty strong. Like the capacitor, the
coils communicate to the magnetic field about the value and transparency. Like the electric
field, the magnetic field consists of only one picture.

v

without current, the coil pair
disappears 4

tell B-Field |to | set to] |withinputs [QXIIP x I b

calculate
current
magnetic flux
visualizing the density 7
magnetic field z

tell BField (to set ghost | effect to a

with it €139 ~ (@DLTT)

v

30you can really make it much more beautiful!

11.3 Helmholtz-Coils and the Magnetic Field 104

If we switch off the electrical field and look only at the elec- | escuonsouceus grm
tron pathin the magnetic field, we get an almost circular path, o
but not a closed one. The spiral results by calculation inaccu-
racies, because the calculated changes are much too big.
We'd have to calculate in much smaller steps. So, we still have
to work on that!

Magnet Coils | [0 |

Copciorts 0|

11.4 The Electrons

Now comes the bitter moment where we can no longer avoid physics. Be that as it may.

Two forces act on an electron in the arrangement: the electric and the magnetic. With the
electric, it's pretty simple. It's upwards here because the electron has a negative charge:

F, =eE

The Lorenz force ﬁ'L =q-VX E is perpendicular to the current velocity of the electron and
the field direction. So, we have to work with vectors. The magnetic field has only one com-
ponent in the z-direction, i.e. "into the screen", the speed only two components in the x-
and y-direction "on the screen".

v, 0 v, -B
Therefore, the following applies: F’L =e-| v, [X 0|=e|-v, B
0 B 0
— vy 'B —
Summarized: Fgesa,m =e:|E—v -B| ,andthereis: F=m-a
0
we obtain for the accelerations in both directions:
e e
a=—v B und a =—(E-v_-B)
X y y X
m m

with the signs corresponding to the coordinates of Snap!. These accelerations change the
velocity components and these in turn change the position of the electron. That's it.

We can transfer these results directly into the electron's script. We adapt the constant e/m
a little bit, because "real" electrons are significantly faster than our screen representatives.
No other adjustments are required. The electron therefore only needs the "too large" local
variables €/m and the acceleration and velocity components. In order to better follow the
track, it is drawn on the stage.

11 Project: Electrons in Fields 105

when clicked
set em | to [RE -

e e e T here the correct value of 1.76x10°11 C/kg has been
changed in favour of a speed that can be displayed.

go to x: | @[+ xposition | of Electronsource

y-position | of Electron'source

pen down

wait until SRV 3= R > J b

- wait for it to start. 4
|set vy to (] “

set vx to| sqit |of t ¥ Ub | of Electron-source B
accelerate electrons with Ub
repeat until ==

or key space | pressed? fly to the edge or to the capacitor
plates

" 4 x position 2] » and ‘ X position agzi’)
I —————— the electrical and magnetical forces
set ax (to|e/m x act within the arrangement /4

VA

=\

set ay |to/(e/m x| E |of EField |8 (vx x B |of B-Field

| change v« | by €23
| change vy | by €

go to x: (x position + wx y:(y position + vy

go to x: | L) + xposition ' of Electron-source - Wz

y-position | of Electronsource Packitoineitop %

You can now observe the sometimes amazing movements of the particles. Of course, it has
to be asked what is true and what can be attributed to numerical effects. Projects never
end, they give impulses to further questions!

12.1 Operations on Strings 106

12 Texts and Related Topics

12.1 Operations on Strings

Contents:

1. use of the built-in string blocks

2. development of new string features
3. creating your own library

Like its predecessors, Snap! contains a set of methods, reduced to the essentials, that
work with strings. This includes

e join <string1> <string2> : the concatenation operator for concatenating several
strings. The result is a new string. The operator can be
extended with additional arguments using the arrow

keys.

o split <string> by <char> : the operator for splitting a string into a list. The sepa-
rations are made at the specified character, typically
the blanks.

o letter <n> of <string> : returns the nth character of a string.

e length of <string> : returns the length of a string. (Not to be confused

with length of <list>!)
e unicode of <char> : returns the unicode of a character.
e unicode <n> as letter : returns the nth Unicode character.

Other string operations can be found in the libraries Tools and Words, Sentences. They
can be imported from the File menu. The new blocks are located below the Make a block
button in the Operators palette. We want to go a different way here by building up some
helpful methods from the basic operations. First, we want to write a method rest of <text>
from <index> which returns the rest of a string from a certain index. So, we create a new
block, which we assign to the operator palette this time, so that it looks nice green like the
string operators. Since this is a function, we click on "Reporter" and because of course oth-
ers should also benefit from our work, let's leave it at "for all sprites". As already described
several times, we can insert the parameters at the +-characters between the words of the
method header. We typify them as text or number and specify the default value 1 for the
parameter index. Both are displayed in the method header as index # = 1.

& for all sprites

=

 for this sprite only

join 0 T
!-vn

Cancel |

[~ creminprame |

[index

OK ’ Apply ’ Cancel i

L] Cancel |

12 Texts and Related Topics 107

In the script we copy all characters of the text beginning
with the index into a string variable result. This is returned
as function result using the report block. To make things |[Saila b
nice and fast, we'll pack it into a warp block.

rest of 'text from (index # =1

i result

set resull |to

if index > (]

set i

set resull | to!join result ({

change i | by &P

Similarly, the function beginning of <text> to <index>
beginning of text to index # =2

returns a string.
script variables | i result

set result |to i
to
repeat until /| { i index |» or{ i | length of text
set resull | to! join result (
change i | by D

report result

Both functions make it easy to get a section of a string.
part of 'text from 'start# =1 to (end # =2

2

report | rest of (2111111117 text L) end) from start

And the position of a substring in another string can also be
determined - nicely recursively. If it does not exist, O is re-

index of | part

script variables ' pos
turned.

set pos | tolindex of (part in (25907 text }i{) &P

12.1 Operations on Strings

This makes it easy to implement standard operations such

. . | replace -all | 7
as replacement in strings. = ——
script variables ' pos

~

beginning of (=74 to (LZENT) LT

set text | to| joi

ot ot (2 o (G et o €0

set pos to index of old in text

To make mankind happy with these new possibilities, we export the created
blocks to a library. To do this, we select Export blocks... in the File menu and
then select the blocks to be exported - all of course! We receive a file string
operation-blocks. xml, which we save in a suitable place. If necessary, we can
load the blocks into other projects via the file menu.

- Export blocks :

(‘part of g from &P to €
(rest of N from G
(beginning of Il © €
(index of N in WM
(replace all] with [in |

12 Texts and Related Topics 109

12.2 Vigenére Encryption

Contents:

e using the Tools library

e higher order functions

e additional control structures

Vigenére encryption is an extension of Caesar encryption, in which each character of plain
text is shifted by a number in unicode resulting from a key character. Usually the key is
shorter than the text to be encrypted, so you simply extend the key until it is at least as
long as the plain text.

Beispiel: plain text: THISISASECRETTEXT
key: NOKEY
extended key: NOKEYNOKEYNOKEY

Thus, the first character of the plain text (T) is shifted by 14 characters (N is the 14th char-
acter), the second character (H) is shifted by 15, the third character (1) is shifted by 11, and
so on. If you get characters larger than Z, the characters are moved cyclically starting at A
- as is usual with Caesar encryption.

We write a little script that specifies the key and the =g~
plain text and lets a function determine the ciphertext. = {Z& 0
LT ARR D) This text is-to-De-encoded-incredibly-cleverly.

So only the encryption method is of interest.

Since we work with the character codes, we need two blocks from the Operators palette.:
unicode of <char> und unicode <code> as letter.

First of all, we want to be able to convert codes from lowercase (97 .. 122) to up- p_—
percase codes if necessary. Afterwards, we generate a list of character codes from “"i*

the plain text, named textcodes. Creating a list from a string is easy when loading (9 >[5 m <[23 ,J
the Tools library.3! There we find the operation word = list <string>. Over this ['report J

list we "map" a function that calculates a new list from the individual characters == |
of the list. We pass the CODE of this function to the map <function code> over |M

<list> - block, which can be recognized by the grey ring around the function block.

This means that the function is not executed first, as usual, and then the result is
transferred, but the program code of this function is passed to be executed in the
map-over-block.

In this case, the "mapped" function consists of first

L . L 7| code unicode of J LLUCETIEEN . over (word = list (text
determining the unicode of a character and then sending it - _

through the code in capitals function.

We get the result we are looking for:

31 see Harvey, B. and Ménig, J.; Snap! 4.1 Reference Manual, http://snap.berkeley.edu/snap-
source/help/SnapManual.pdf. You can find it by clicking on the Snap! icon in the top-left cor-
ner of the Snap! window.

11.2 Vigenére Encryption 110

We save the code-lists of plaintext and keys in the variables textcodes and keycodes.

Next, we extend the keycode list by the
codes of the key until the list is at least as 2 length of (textcodes b
long as the textcode list. As help we use a

variable help and a new control structure FvOR.A.EACH Y

called for each <item> of <liste> from

the Tools library.

Now all we have to do is apply the Vigen-

ére procedure, in this case only to the let- ‘

ters. Instead of mapping a function, this se; helg |0 (.M? =
—_———————— encrypt capital letters only y

time we use the For loop fromthe Tools |~ e
library: ficiange hoo I GLD

for < counter> = <start> to <end>. | L AR
else

of (textcodes as letter

We use it to scroll through all characters | G R mL e Ut

in the textcode list and encrypt them as

indicated. Note that there are two ver-

sions of the length of blocks: one for strings and one for lists.
The process as a whole:

encrypt text with (key

script variables textcodes | keycodes | result | help

set texicodes v
over | word = list | text twice the mapping function

over | word = list key

repeat until . not ¢ length of (keycodes length of (textcodes |

for each (item of (help v
FOR.EACH ,

add [~ to keycodes
set resut [to [

for(i |— g to length of (textcodes

set help i item (i of (keycodes | — I

b 4

encrypt capital letters only /.

repeat until - help < J]

change heip | by &3

set help to/ unicode help as letter
else

set help to| unicode item (i of (textcodes as letter

set result to ! join result help

12 Texts and Related Topics 111

12.3 DNA-Sequencing*

Y A GGTAGCIAT T TAATGAG CEAAGTAAC TC TGO AAAATATCTGGCOTCTCGGCCTOTAAGTTGAGTGTAMAAMACG)
Co nte nts * DMJWUJ‘“HIM CAAGGTAGCTATCTCCTAATGAGCCAAGTAACTCTGGCTAAAAATATCTGGCGTCTCGGCCTGTAAGTTGAGTGTA

e using your own string li- Connections R
il CCCATGACCTACAAAATCCCGTGTGGGTGACAGTGGA |8} 17 A B
brary z 1 5 10
2 " 6
e working with strings o -
. 5 10 8
and lists g :
. 74 3 10
e working top-down - — ;
9 7 9
10 13 8
. . . " 3 9
In bioinformatics, subse- 8
8
guences are extracted s

-
&
@
=3

DNA-HELIX

(FROM HTTPS://DE.
WIKIPEDIA.ORG/WIKI/DESO
XYRIBONUKLEINSAURE)

from a broth of biomole-

© @

cules containing fragments
of DNA strands. The entire
DNA strand is reassembled from these. Here we use a very simplified model, in which the

sections are represented by strings consisting of the characters A, C, G and T. The frag-
ments "overlap" partially, so that the original DNA can be reconstructed from matches at
the chain ends.

First of all, we need DNA. Sequences can be found on the Internet. However, since the
meaning of the sequence is not important here, we simply create it randomly.

The product of this method, a long character string, we now have to "break", i.e. divide it
into pieces of different lengths, which partly overlap each other. We accomplish this task
by adding a piece of the end of the predecessor to a section at the front. On the first sec-
tion, this piece is empty. We use the string library we created in chapter 12.1.

produce DNA of length ' n # break in pieces DNA | dna

script variables result |t script variables result piece r

> set resull |to list
set resul | to Jij i

set piece [to
repeat n e

set resull | to! join result

set piece | to | join piece (IIJLLILTILIE dna SN r)

set resull | to join result |

set dna to|rest of dna from(r - &P
add piece to result

it o rest of piece from
set resull | to ! join resu ‘ - =
G ploce_jis U piece |) — €P |- pick random &P to

set resull | to! join result [

add ‘dna to/ result

32 A short description can be found at http://molgen.biologie.uni-mainz.de/Down-
loads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf.

12.3 DNA-Sequencing 112

The sections are still in the correct order, so reconstruction would =TS 0 o0 T 500
be no problem. We change that by confusing the order. With the [FErigsRssSsRE 8 e

H n n
following command sequence, we get the wanted "soup" from e e [

pieces of DNA.

In order to reconstruct the original DNA from this, we have to de-
termine which fragments were once connected to each other. We = g =t
create a list of connections in which we enter the predecessorsand [l ezl el
the length of the overlap. Since the first section has no predecessor, set resull |t fist

its overlap length is zero. repeat until ' ' length of (list =[]

: set 1 | to| pick random)P to 'length of (list
find connections

add r | 0i fist) to (result

script variables | i ~ -
delete (r of (list

set connections | to list

repeat until- ‘i > length of (DNA pieces .
One piece of DNA "hung" on an-

Nk
i

add | who is the predecessor of item (i of (DNA pieces
connections

other, if a sufficiently long over-

-
&
=

lap can be found. Since similari-

1

'C‘lTange i by &P £ = 2
ties can also be random, we de- 3 4 8

fine "sufficiently long" as "5". For ; :;. :

a given sequence, there are four ways to "guess" the correct character for each character. 8 2 7
The probability of generating the character randomly is 0.25. With five characters, it is then : . 11 1;’
0.25° = 0.00098, which is enough "improbable" for us. 9 7 g
0 13 8

The only remaining problem is to determine whether and how far two DNA sequences 3 9
overlap. We put it (mentally) one above the other from the middle of the first and then 12 8
move the second step by step "to the right" until we find either an overlap or are too close :i :: :
to the end. Ready. 5 6 10
% 9 6

EF g 4 8

how far overlap 'end with start 2

script variables i hit?

warp
; who is the predecessor of 'a ?
set hit? to .lalse

e script variables | i overlapping
set | to round | length of start |/ @3

B

to [

to | length of end
I length of (DNA pieces | or ¢ overlapping (]

set overlapping to| how far overlap a with item i of DNA pieces

overlapping > [J
e CIC N

report (=400

12 Texts and Related Topics 113

12.4 Text Files and Frequency Analysis

Contents:

e store data on your own computer
e store data on a server

e table views

From dubious sources we got the information that there is an unbelievable secret (proba-
bly German) text in the file ciphertext.txt on our computer. We even know which directory
itis in. To be able to edit the text from Snap!, we create a variable ciphertext and display
it in the workspace. The content is zero. We select from the context menu of the displayed
variables the point import..., navigate to the named directory and select the secret text. It
appears in the variable.

QETLTO ZFE SMXG MZRAGR :

[EG NTORUXRXNFGOTG-RTIDOXTEM VE! TMOZXBMTG TFOSDXTEIBMTG REDZTKILFTOVTO
ciphertext L XXLIVEGEILTO USG RSTLMT, IET MXNTG KXGRYXTMOERT NTORILTERTOEIE FGR

ﬂ« XNT QET ZFOCX, QTG RSLILMXOG I_ii RTG! QETITO TOMXNTG

RXN Tl GSBM XGQTOT IBMATEJTO REDZTK, QGET EX Iuﬂ_u;d: l“.ll

To be on the safe side, we want to save the text in another place immediately. We select
the point export.... from the same context menu and get the file ciphertext.txt at the bot-
tom-left of the window, similar to saving a project. We find it in the download directory of
our computer. The described procedure is simple but cannot be controlled by the program.
It has to be done "by hand".

Text files are a simple but reliable tool for exchanging data between different computers.
In order to do this, we need an http server (which may also be the same computer) running
a script with the desired functionality - here: loading and saving text files.

Attention: There is a problem: If we use a server with HTTPS connection (such as the Berke-
ley Snap Server), we cannot access an external HTTP server. The browser prevents this. So,
if the given scripts do not work for you, please save Snap! completely on your computer
(your browser can do this) and start Snap! locally from your computer. The scripts will
work then.

In this case we want to select the server snapextensions.uni-goettingen.de on which the
script handle Textfile.php is located. We draw two costumes for a text server sprite that
indicate whether or not we are connected to the server. The data exchange with the server
should be logged in a variable infobox. By clicking the green flag, our variables should be
initialized, whereby the connection gets a rather cryptic value. This consists of the server
address, a login script and some variables — just PHP. We change our infobox to "table
view" using the context menu, which looks a bit better. The output window then is like

this: p———
. Textserver connected m]

th:’r’*:"f.’}

Textserver infobox

0 items

snapextensions uni-goettingen de/mysglquery php?server=db 1 &user=snapexuser&password=snapluser

set connected | to< @ false

-

| cipherext

o —D

slider min...
slider max...

+ normal
o large
= slider

import...
gxport...

o —allD
o —allD

table view..
open in dialog...

12.4 Text Files and Frequency Analysis 114

We need a connection to the server. This is done using

the url block to which we pass the required data. We
add to (infobox

connection

record success or failure in the info box.

set connected |to < true @

Switch to costume DB-connected

add RO to (infobox
else

set connected | to < @ false

switch to costume DB-disconnected

add ERFGEE to (infobox

After executing this block, the connection to the server is established, but the :
text in our infobox is only partially visible. Therefore, we click with the left 1E
mouse button on the column header items and drag the column to a width]
that all text is readable.

We want to write data to a file on the server. The text

. . : write | text = this text to file ' filename = this file
to be written and the file name are given as parame-

ters. First we attach the extension ". txt" to the file [=Eliic ol aig e T
name and make sure that the file is stored in the sub- [l tofle ROREUIE 0

directory textfiles on the server. Then, the url block sef |_iiapsdexiol BEC Glese
transmits the required data. " i >f
set filename | to

S[71| ftextfiles/| beginnin filename [©) (i — @) EY
else

Reading from a file takes place accordingly. set fiename | to (join LTI filename K

read text from file (filename = this file if connected

éet result | to

script variables ' i result - =
url (join (connection TTETHEIENENCY (filename text

add to (infobox |
set i to index of il in filename add | beginning of result to L length of ‘result | " to (infobox

if i >
. add [FLE to (infobox
set filename -

set fiename | to (join NG filename [We export the text server

sprite into an XML file and

can use its functionality in

set resull | to url(join (connection filename)
other projects.

add [J] to (infobox

| length of ‘result = gP)

add [FE to (infobox
report Iﬁease-connect-toserver-ﬁrst.

12 Texts and Related Topics 115

After establishing a connection, writing and reading, our workspace looks like this :

@ Despl Ubersetzer X /' I Snap! Build Your Own B X

@ | ® files/}/Ci/Usars/emodr/Dasktop/Snap!20Build% 20Yourd%200wn%208locks%204.1.2. 1 html | 3

h & ' Textfies

{ Control £
Sensing | = =
Operators & - "

Variables Scripts Costumes

text server infobox

6 items
1 T —

ST write to file

set nection | to

hitp //snapexiensions uni-goettingen de/mysgiquery php?server=db1Suser=snapexusers reading from file
(ot] o B [et comecea |0 @use,
(letter @ ©
{

| switch to costume DB-disconnected

(unicode of £ [connect.
{unicode @ as letter

[T iDLF ORSLIKH-SDF JKHRJSDKF HSOF JKIKH R LT

N b N - |
L KJHDGLFJKSLJKH SDFJKHHJSDKFHISDFJKJKH
(JavaScript function (|§ (read text from file T |

[write, [ERTIE to file GED —
(read text from file (X5 (i
(‘part of] from @B to | e
(resi of W from @B

x

[Textfiles blocksxmi Lo [text serverami el ‘ Alle anzeigen

It doesn't help, we have to decode the cipher now. For this purpose, we perform a fre-
qguency analysis - i.e. we count how often the individual letters appear in a text.

27 E B
1 char frequency
2 A 94
| 3 B 159
4 c 46
b D 40
‘ - _ B E 433
P imicodelin o< lettes ,i [0} “;)“-‘ to GGe=alt :ggl:clllzyee ;esults list. No charactersA - F 248
8 G 570
9 H 4
10 ! 380
1 J 51
12 K 182
13 L 290
note capital letters only Lo M 2
15 N 113
16 o 364
i result ’,“ with [17 P 2
(c:::rr;?:ltr:: the counter of the p 18 aQ 260
19 R 214
20 5 151
21 T 1034
22 u 62
23 v 13
24 W 2
25 X 303
26 Y 12
27 Z 79

12.4 Text Files and Frequency Analysis 116

Since E is the most common letter in German and it would be cruel (for me) if the text had
been written in a different language, we save the list of frequencies in a variable frequen-
cies and replace the large T in the ciphertext with a small e - because T is the most com-
mon one.

set frequencies to frequency analysis of ' ciphertext
set ciphertext | to ! replace all il with il in 'ciphertext

Replacements were made with the usual loop:

replace all ' old with new

script variables i result

set resull | to! join ' result

Because the result is not too impressive, we need more replacements. We take G for n
and perform this replacement.

set ciphertext | to(replace all (] with il in 'ciphertext

We can analyze the ciphertext quite well if we divide it into lines with EZ 0o

1
> T, -
< ———

For example, we find words like eEn. We therefore consider the E to be an i. 3-
eEn NeORUXRXNFnQen_F

That was a good idea! Let's keep searching and trying replacements, and at some point, 3

ave AL oy

we'll find the secret! You just must hold out - there are only 23 letters left!

12 Texts and Related Topics 117

12.5 SQL Databases

| Verbindungsaufbau
| set patenbanken |te fies Datenbanken
| wiihle Datenbank Nr. €55

| wiihle Tabelle Nr.

@

T

(Ties Attribute von Tabelle Nr. G5

3
4
5
8
T
8
9
10

S
HHi i

X hueler id_nummer &hatkurs id_numme!
LMllhatkurs kursnummer felikurse kursnummer

Contents:

e access to external databases

e SQL results and tables

e parameters with selection boxes

An important application of IT systems is access to external data sources. On the one hand,
the Internet is available, on the other hand, the use of SQL databases is common. Since the
use of this type of application is somewhat complicated in many computer languages, it is
often handled separately from the algorithms. This makes this part of computer science
quite boring: you either create ER diagrams on paper or query databases with special client
applications, e.g. PHPmyAdmin, but do not use the results any further. With the help of
Snap! this can be done differently!

We need a server that runs either on another computer or on our own, and on which - in
this case - except to an http server and an SQL server there is a PHP script called
mysqlquery.php. We send data required for an SQL query to the SQL server using the
parameters type, query, command, ... The result of the query is either an error message
or a table with results. If necessary, the script prepares it to be displayed as a list by Snap!.
The source code of this script can be found e.g. on http://snapextensions.uni-goettin-
gen.de.

We create a sprite called SQLserver, which shows by its costume whether there is a con-
nection to the database or not. Some attributes such as connection, connected, current
table, etc. store the current state, and the processes are logged in an infobox. This sprite
is saved as SQLserver and can be loaded if required. The new blocks required for SQL
queries are globally so that they are easily accessible for queries outside the server sprite.
They are stored in the SQLblocks.xml file and must also be loaded.

12.5 SQL Databases 118

First of all, we need access to
connect

the external SQL server. For
infobox |to list v

this purpose, we set up a con-
proreammma oy e all initialize local attributes

nection setup block. The local
tables |to list

attributes are initialized, and =
attributes | to list

the connection data is stored e

in the variable connection, current database (€0

so that it does not have to be connection | to =

entered each time. Then the ; " i °°""°°“°“A

connection is established, establish connection
>

and the success or failure is | TR AT
noted in the variable con- R o s e

nected. add BEES to (infobox
else

set connected | to <) faise

switch to costume DB-disconnected

add LR to (infobox

With the help of the reporter block read
databases, the SQL server is asked for the

read databases

script variables (dbs

existing databases. These are returned asa =
set dbs | to url (join conmection [ERE0:H

list. For the actual query, the value "getDBs"

has to be appended to the connection data o iEssg v R TR T T &

as "type". N -
set dbs |to! split ' dbs by [Xd

repeat until / not < item @EEE) of (dbs

delete of (dbs

add to (infobox

The connection setup and the selection of a

database can be saved as a block sequence. S REEEE G LG EIE L B ET
choose database no. E5)

The last block selects the specified data-

base. Of interest is the small arrow next to chioase -database; ‘no. (Gikiill

the parameter 3. If you click on it, a selec- [ae e oo
tion list with the possible values appears. if/ (n > length of (databases

EY: [l database-doesn't-existE GRS 1 {1701
else

<

set currentdatabase | to item (n of (databases

set resull | to
url [join (connection ITIEILE current database

set currenttable |to [

set tables | to read tables

add (join (EEZEITY 0 to (infobox

12 Texts and Related Topics 119

A selection list can be created in the block editor by right-clicking in the dark area. You get opﬁons
a small context menu with the item options... In the pop-up window /nput Slot Options
the possible input options are entered. @

§ Block Editor .

" Input Slot Options

Entarone option per fina.
Optonally use "=" as key/value delimiter and [for submenus. &g
the answer=42

_O_K.J Cancel l

In a very similar way, the system determines which tables are contained in the selected
database and in which attributes the tables are structured.

read attributes from table no. (n# =1

script variables (this

script variables cimns
set tis |to set dmns_| to
1 soin Conmection

in
url B8 join ISHOW-TABLES'FROM- current database | ATEEERENEIN oo A —
connection join [SHOW-COLUMNS-FROM- (S TR IR = =20 < »
current database

e

rqleatulti/not m SR of (cimns HD

delete of (clmns

set tbis | to split tbls by 734
repeat until/ not { item CZE of (this [N |
delete E5KY of (tbls

add to (infobox add to (infobox

With the help of the new blocks we can find out which ta-
bles are available and which attributes they contain. In the

context menu of the list received, the result can be dis- R e v

played permanently using the "open in dialog" option. In J=- =% TR I _ | openin dialog...
choose database no. €

this way, the values required for requests can be clearly ar-

ranged on the screen. !
read attributes from table no.

Table view) el view o, Table view

8
1
2
3
4
&
B
7
8

12.5 SQL Databases 120

We have now created the conditions for submitting queries to the database. For this we
AVG([N) MAX(N)

COUNT(Il) MIN([)

need SQL aggregate functions and operators. Using the data from the table views and two
types of SELECT blocks, these can be used to interactively compile SQL queries.

Ml o

SELECT IGI FROM | WHERE N - . NOT I

= - AND
SELECT B Ml FROM i WHERE GROUP BY il HAVING - -

ORDEREBY [l K LIMIT @

= = - oR m.
- N ()

Please note that only the texts of the queries are
generated! The requests are not (yet) executed. = N

These blocks can now be used to create and control SELECT requests.

SELECT n [Name) .. SELECT Name Kontinent Einwohner FROM land,muttersprache WHERE (land.Kuerzel = muttersprache Landkuerzel AND Sprache LIKE "English”)

For the execution of such queries we have a
- last - block available. An SQL command is exec SQL-command (query
passed to it either as text or as a result of a =L c o 0Ea ntiE

SELECT block. Any empty entries in the reply (FSSFESRE 20— i =
list are deleted.

set result
split
url
join | connection query current database

by 34

repeat until © not {item of (result @l

delete of (result

add to (infobox

SELECT (what) (attribs—.., FROM (mytables..., WHERE (cond The simple SELECT block
script variables result | i builds an SQL query from

e R CYSELECT the parameters. It uses a re-
if ‘'what =§

porter list 2 string.

set resull | to | join ' result FLII

list [list : $arrowRightOutline string

~

set resull | to join result [EJNGQ i > -
script variables | i result

set resull |to[join(result (list attribs c string IO = i

set resull | to | |

repeat until - i > 'length of (list

set resull | toljoin result item (i of (list §

change i | by &

set resull |to ! join result (Jist mytables c) string

report join result item (i of (list

12 Texts and Related Topics 121

With a full SELECT block, this is no more complicated - only longer.

SELECT (what attribs... FROM (mytables... WHERE (cond ?
GROUP BY (groupattribs.... HAVING (havcond ? ORDER BY
orderatts... how LIMIT (n#

script variables | result

G B GYSELECT

if ‘what =§

set resull | to ! join result EIIOVY
else

L what = MSIA s

set resull | to (join (result BEINGY Insert DISTINCT ifnecessaryA

v

If all are meant, it does not depend on
further attributes. /4

-

[' length of (attribs >] -
Append all attributes
set resull |to | join ' result | list ‘attribs o) string G separated by commas

Ne—

if - length of (mytables

report [ERROR:-tabIes-mnssmg! Error if the tables are missing.

else

.

set resull | to | join/ result [list mytables c) string v
Append tables separated by commas,

i cond) > H v
Append WHERE clause if necessary
set resull | to ! join result QUEIEAS cond

-

if ' length of (groupattribs > [] v
< Append. GOUP BY
set resull | to| join result [FTOIVANE | list ‘ groupattribs c) string if necessary #

it havcond)} >] >

Append HAVING if
set result | to ! join result] < havcond necessary Y/
if ' length of (orderatts v
N Append ORDER
set resull | to| join/ result [e list ‘orderatts c) string BY if necessary
if "how = m v
5 sortif necessary

set resull | to(join' result X9

set resull | to | join result DY

limit the output if necessary

set resull | to join result JNVIg n

12.5 SQL Databases 122

We can work with it now. (" answer)
[Avoba.North America 100000 |8

set answer | to ¥4 Anguilla,North America,8000 |i§

exec SQL-command E] Netherlands Antilles,North America, 217000 {8

|~ |[Name [Kontinent |Einwonner | 4 » FROM {iand|[muttersprache E E¥ American Samoa,Oceania,68000 |8
¥ [land Kuerzel | = |muttersprache.Landkuerzel| J.\'1)] AT S TN I NS IR
e — Gl Australia,Oceania, 18886000 |3
L |muttersprache.Sprache i - - 4

o . [Eng ¥l Bahrain Asia,617000 |

£:1 Belize, North America, 241000 ||
-l Bermuda, North America, 65000 ||
bt Barbados,North America, 270000 [
L Ell Brunei Asia, 328000

And it can also be more complicated: How many people speak which language?

(" answer b
457 fems
2
Luri, 67702000
Luvale, 12878000
Luxembourgish, 435700

235 Macedonian, 24256100

Madura 212107000
Maguindanao, 75967000
Mahor §,149000
Maithihi, 23930000
240

I517000

set answer | to
exec SQL-command

ECT~[Sprache CTL{@E monner) 4» FROM [iand [mutersprache 4 P WHERE

land.Kuerzel Il muttersprache.Landkuerzel 8 GROUP BY [Sprache 4 » HAVING 4
ORDER BY) [DESC v LIMIT 7

Amazing!

The resulting SQL library is intended to test SQL commands interactively and then - if suc-
cessful - integrate them into new blocks that allow the database to be used without SQL
knowledge. We clarify this with a simple request.

For a new project we first import the SQLblocks library, then the ' connect

SQLserver sprite. In addition, we create an SQL user sprite. This asks FEEais e e S e Ll
| choose database no. @5

the SQLserver to establish a connection.

Afterwards, query blocks can be created, which, for example,
ask schueler for | criterion
report
exec SQL-command
K criterion | COUNT((criterion.)
% GROUP BY -, =100 HAVING

determine the data that are important for school statistics.

From another sprite, this method can be used without

knowledge of database queries.

=011 ask [SQlserver

for [‘ask schueler for [~ | with inputs (ZEZ5T00) «»

12 Texts and Related Topics 123

12.6 Tasks

1. A simple form of block encryption is to insert the text to be encrypted into a table
with several columns from left to right and from top to bottom. If the last line is not
filled, then any letters are inserted. The encrypted text is obtained by reading the
table from top to bottom and from left to right.

Example:

DIESE > DRIHTHIHITSECEEETIHISXUMGMETNLEX
RTEXT

ISTUN

HEIML

ICHGE

HETIMX

What is the key? Implement the procedure.

2. Eliza is a well-known program that simulates a psychotherapist. He answers
randomly to statements of the patient by either asking "typical" questions
("What would your mother say?") or taking these from parts of the patient's
sentences ("What did you mean when they say: ...").

a: Find out more about the project.

b: Realize the project.

3. Genetic algorithms simulate the evolutionary approach of nature by randomly gen-
erating new candidates to solve a problem. In this case, palindromes are sought, i.e.
words that are read forwards and backwards are the same. The procedure consists
of an initialization in which a random initial population is generated. In this case, a
lot of random words. Afterwards a loop is run again and again, in which candidates
for a recombination of individuals are selected based on a fitness function. At least
one new candidate is created from two candidates. After that, random changes (mu-
tations) occur. In the resulting new generation, the "best" candidates for the next
round are selected on the basis of the fitness function (selection).

4, The determination of the Levenshtein distance between two strings is used to de-
termine the "degree of relationship" of the strings. Typically, these are DNA strands
from the characters A, C, Gand T.

a: Find out more about the process.

b: Implement the procedure.

13.1 Funktion Terms

13 Computer Algebra: Functional Programming

Contents:

1. advanced string operations

2. writing JavaScript functions

3. predicates and top-down-development

13.1 Function Terms

We want to show the possibilities of blocks by means of a small "computer algebra sys-

tem". To do this, we have to define what functional terms are.

product:

(%)
c
3

summand:

number:

potency:

Function terms are e.g.:

A 4

sum

»
»

product

(0

v

sum »@——»

A\ 4

summand

v

number

A 4

potency

Ll
v

50 &

L number

e

3 4x (2x-1)(x"2+2)

number

(x)(x"2)(1-2x74)

v

syntax diagrams

13 Computer Algebra: Functional Programming 125

13.2 Parsing of Function Terms

To work with function terms, of course, we need someone who understands them. We
draw Paul, the little mathematician, and then we make him clever. First of all, Paul must
be able to read function terms. To do this, he asks the user for a corresponding entry using
the block ask <question> and wait from the Sensing palette. We shift the whole thing
into Paul's method, which we define as a function. So, we select the oval block shape in
the block editor. If we have defined a variable, e.g. term, we can assign the result of the
input to it.

Next, we check whether the entry is correct. We move the corresponding methods to a
sprite called Parser. In this we want to program functionally on the one hand and solve
the problem on the top-down way of proceeding.

We create the locale block (for this sprite only) for the Parser is <term> a correct term?
as a predicate, which can only return frue or false as results. After that we have a nice
title, but unfortunately still no content. Nevertheless, we can already use the block in
scripts - just like other blocks. This allows recursive operations and is suitable for top-down
development. Paul can ask the Parser, for example:

ask Parser |for <9 is il a correct term? of Parser]

with inputs term |

Since, according to the syntax diagrams, correct terms are either sums or products, we
move the problem there by creating two corresponding predicates - still empty ones - lo-
cally (for this sprite only), because the rest of the problem doesn't concern external ob-
servers anymore.

Snap! evaluates logical expressions completely, which is nice when side effects have to be
considered. However, this increases the runtime of tree-like call structures enormously.
Therefore, we first write two predicates for the lazy evaluation of Boolean expressions:
the second expression is only evaluated if the first does not already determine the result.
As identifiers we choose the operators && (lazy and) and || (lazy or), which are often
used in programming languages.

The predicate is <term> a correct term? can now be specified completely.

report v asum? ||/ 9 ; a product? |

We continue this procedure for all elements of the language definition of correct function

terms. First, we'll take care of the sum. This consists of either a single summand or a sum-
mand, followed by the correct operator (+/-) and a sum. We can write this directly if we
still have an empty predicate is <term> a summand?

We have to be careful that our terms - strings - are not accidentally interpreted as numbers.
For this reason, we have always set the type of input parameters ferm to "Text". If we
forget this, the character string "123", for example, could be interpreted as the number
123. For example, the second element of the string is a 2, but there is no second element
in the number 123. A corresponding access would lead to an error.

Paul, the mathematican

£0 YPlease -enter-aterm! ENT VT

functional and top-down
programming

top-down design
with empty methods

T

lazy evaluation

f_ && f(=7

A

else

s _,_J
| report o

———

(az || (b2
if a
revort T |

else

Ip;e:')ort o
e

Pay attention to the
type of parameters!

13.2 Parsing of Function Terms 126

We need something else. The entered term is no longer examined in its entirety, but we
must split it into two parts: the beginning of <term> to <character> and the rest of

<term> from <character>. In addition, the position of a character in a character string is

determined: index of <character> in <term>. In this case, we want to implement them String processing

with JavaScript

as JavaScript methods, because time matters.

functions.

beginning of term to | char term from char

JavaScript function ([T){
term = term.toString();) {
zeichen = zeichen.toString();
iﬁ:er‘u.lenﬂ:h--@) return "7 zeichen = zeichen.toString();
if (term.length==0) return "";
if(term.indexOf(zeichen)==@) return ""; lie =0} ’
else return term.substring(@,term.index0Of(zeichen)); if(term.indexOf (zeichen)==0) return term.substring(l,term.length);
else if(term.indexOf(zeichen)>=8) return term.substring(term.indexOf(zeichen)+1,term.length);
else return "";

term = term.toString();
zeichen = zeichen.toString();
if(term.length==8) return @;
else

if(term.index0f (zeichen)<@) return @;
else return term.indexOf(zeichen)+1;

So, we write the predicates is <term> a summand? and is <term> a sum? each with an
additional security prompt.

e e

<Qis term an addend? ||
beginning of term to Q] an addend?

rest of term from a sum?

beginning of term to JJl an addend?

rest of term from Q] a sum?

summand?

report Qis term a number? HE Qis term a potency? I

13 Computer Algebra: Functional Programming 127

We are coming to the end. is <term> a number? is very easy to write when we have
is <term> a cipher?

term a number?
of term) = 0
{ 7 unicode of

' | 4 Wunicode of I

—_

report 9 is term a cipher?

@ raise . J

9V is letter &P of term acipher? &&

report
¥ is Rest von ‘term ab €» a number?

And how do you check a potency? That's also in the syntax diagram - we just have to copy
all the details.

O
I _/
number number

\4

Vis beginning of term to JJ] a number?
not { v =
beginning of term to 3l | = [

. false]

rest of term from [

report true @

if not { letter gJP of rest of

term .w?,_

from gl a number?)

13.2 Parsing of Function Terms 128

Now only the product is missing, which can be formulated in direct analogy to the sum,
because a product consists (with us) of either a compounded sum or a sum followed by a

FONENN O

product.

also pretty

recursively

(9 sl beoiing ot (X term LT to [2 sum?

eter (T A o) o torm [N

We can use it to check (parse) whether an entered term corresponds to the selected syn-

tax. If this is the case, you can continue working with it. Our mathematician Paul here asks
the Parser.

of Parser

Of course, he packs this query in a separate block to give the impression that he can answer
something like this himself.

((Pautterm (EEETEET))

13 Computer Algebra: Functional Programming 129

? derivation of | term

13.3 Derivation of Function Terms

if ' 9is term asum?

We now want to determine the first derivation of correct function terms. We | report (TR i e e)
else

collect the necessary methods from the parser again. Since there are onlytwo =~ .
EE 5 ot the e for proucs o term

possibilities for the internal structure of terms, the first approach is simple.

When applying the summation rule, we must determine and .
apply the rule for sums to ' term

derive the summands. Because we have defined unsigned

script variables result summand = sign h

numbers, we treat them separately, thatis, weadd a"+"if nec- s
essary and then split the sign again. Then the different possi- o Ea® i

set h to

bilities are treated according to the rules of mathematics. =
if not{ ([1 Jof term)) =

When applying the sum rule, script variables were used fora [isg

change. This shortens the procedure a little bit. < ,
repeat until (=

set sign | to letter P of h
9 derivation of summand ' summand >

if
¢ letter P of summand =g or { letter P of summand g

to Restvon h ab &P

set summand |to Rest von summand ab &3

if 9is summand anumber? summand

th tofj

summand | to ! beginning of h to Jl

st h | tol join J

Ui beginningof h to il | = [
summand | to | beginning of h to Nl

LIRS LU | rest of U from [+ |

set summand to beginning of h to Jl

r - set h | to! join J [
1L ¥ beginning of summand to [l)

i beginning of h to Jl
length of Vbeqinninq of h to -7

[beginning of summand to [l |.{ rest of summand from Jil | 3 4“’" ST
seth [to

else
set summand | to ' beginning of h to Sl

report

| beginning of summand to [l | rest of summand from gl | ¥
join 3
|| rest of summand from il & &9

set h |to! join =V::_~;f of 1 1) from |+

set summand | to (9 derivation of summand summand

1 # not ¢ summand

set resull to join result sign summand

set resull | to(Rest von result ab &

13.3 Derivation of Function Terms

130

Only the product rule is still missing. We can just write them down - with the addition of

some brackets.

apply the rule for products to | term

9

9 is rest of ‘term from Ml a product?

‘rest of £ZY from [| N i term L3

apply the rule for products to ' rest of term from

apply the rule for sums to beginning of

a correct term? of Parser
with inputs £ «»

set derivation | to

ask Parser |for (9 derivation of |] of Parser

else
L=\l That-is:not-a-correct-term - Try-again. RLIH 2 JE0

It should be noted that the derivatives do not necessarily correspond to our simplified
definition of function terms and therefore often cannot be "further processed".

13 Computer Algebra: Functional Programming 131

13.4 Calculation of Function Results and Graphs

If we can parse function terms, then of course we can also calculate them. The procedure
is very similar to parsing, and it is much easier if we already know that the term entered is
correct. We leave this work to Paul, who up to now - apart from self-portrayal - was quite
superfluous. But, as a mathematician, he can do arithmetic!

We want to calculate function values and then draw the graphs of the function and its first
derivative. Paul must be able to draw at least one graph.

-~

9\ draw a coordinate 9 draw graph of term with color | color

< N
hide variable term v script variables xp 'x 'y (yp
N\

hide variable derivation Clear screen / ,
switch to costume pen
set size to @ %
set pen color to

V4 e ————
go to x: P v: €D if (color =]
go to x: &GP v: set pen color to
g0 to x: @ v:
g0 to x: @B v: GED
go to x: v: @ B

if ‘color = §

2 | set pen color to
g0 to x: €I v: € L =
g0 to x: D v- €D | set pen color to
g0 to x: GED v: @I s

go to x: (Xp y:(yp
scaling y/ repeat m

go to x: &P v: €D

change xp | by €9
set x [to(' xp / &P

sety to 9 calculate term (x)

i % ;et y [tolly x &P

gotox:(Xp y:(yp

g0 to x: €D v: €& I

sﬁitdi to costume Paul

set size to (100 XT3

In these scripts all blocks already exist - except for one. The calculation of a function term
at position x is still missing. We specify the corresponding scripts only because they are
very similar to those of the parser.

13.4 Calculation of Function Results and Graphs

132

term

/ calculate

Qis N a sum?

of Parser

calculate product ‘term (/x)/"

e calculate sum ‘term (‘x#)

script variables ' summand rest pos+ pos-

H set tem | to | join i term

set pos+ |to length of (L= LLILI K ¥ Rest von term ab @& | N

set pos- | to| length of | LIJ{UF Rest von term ab &P -

"‘pos+ > pos-

set summand | to

join

1 Jof §C L]

L[){J# Rest von term ab &]

set rest | to|join J [LZ29UE Rest von term ab @& Licl 3

I

pos+

if =

pos-

set summand | to ({

set rest [to i
else

set summand
join

to

&7 term) (UL Y Rest von term ab &)

set rest |to| join [L5407 Rest von (term ab @ |l oEl

9 calculate summand summand (x5} + 9 calculate sum

=

Q

calculate product ' term

of Parser

of R pfrom | |ROW |

calculate sum ' beginning of (£

9 calculate product (rest of term from Il (' x)

| ¢ calculate sum | beginning of g

¥ calculate summand | term (x#)

script variables number sign
to [
to i

exponent

set number
set exponent

set sign | to/ letter &P of term

set term to/ Rest von term ab &)

" length of = *,

L
§ ask Parser |for <9 is il @ number? of Parser withinputs term

beginning of term to [l

to

numbet

number | to beginning of term to JJl

rest of term from Jl @ =

0]
to J

exponent

to' rest of term

from N

exponent

number x [x exponent

number X ~ exponent

&P x

x # y #

script variables | result

to

set result

repeat y

set result to/ result x(x

report result

(x) x

13 Computer Algebra: Functional Programming

133

With their help Paul can now shine!

set tem [to J§

set derivation to [}

go to x: §EID v: €D

set term | to 9 ask for a term

4 <Qis Il 2 correct term? of Parser

6 draw a coordinate system

9 draw graph of term with color f

set derivaion | to
| ask Parser |for (9 derivation of il of Parser | with inputs term

i ask Parser |for <9 is il a correct term? of Parser
with inputs derivation

9 draw graph of ' derivation with color g

e-derivation-is-not-of-the-given-syntax.--cann't-draw-it.

else

L= "W Thatis-not-a-correct-term.-Try-again. RLTE 2 JE2owd

show variable derivation

show variable term
’:” I”” (x‘3-3xx1-x‘2) J

g0 to x: @D v: G

QETEETT W (3XA2-3)1-XA2)+{(xA3-3x)-2%)

syntax. | cann't
draw it.

13.5 Tasks 134

13.5 Tasks

1. a: Make the outputs a little more readable.
b: Combine results in the derivation so that they correspond to the given syntax and
the graph can be drawn.

2. a: Define signed numbers and change the processing of the terms accordingly.
b: Proceed accordingly for floating point numbers (numbers with decimal points).

3. a: Define advanced function terms, which can contain quotients, using syntax dia-
grams.
b: Enable parsing of these function terms by writing appropriate predicates.
c: Form derivatives by implementing the quotient rule as a string operation.

4, Perform task 3 accordingly for trigonometric functions.

5. Allow function terms that require the use of the chain rule. Implement appropriate
predicates and string functions.

6. a: Letthe graphs of the other function types draw after they have been parsed.
b: Allow a selection of the graphs to be drawn (function, first and second derivation).

7. Introduce a "function calculator": a function term is entered first. If this is correct,
values can be entered repeatedly, and the corresponding values are determined.

14 Artificial Plants: L-Systems 135

14 Artificial Plants: L-Systems

A Snap! Build Your Own Bl X ' & Deepl Ubecsetzer x

C | @ Sicher | https://snap.berkeley.edu/snapsource/snap.htm|

[set ange |10 2RI
[set tengt |10 7

o I
(ol] v
14|

Contents:

e using a list as a stack

e simple context-free language
e use of Turtlegrafik

14.1 L-Systems

In Aristid Lindenmayer's systems33, plants are described by a rule system that creates the
drawing instruction for a furtle from an axiom, a first character, by substitution. One can
imagine that - starting from a shoot - the plant is drawn until the next branching point. This
position is stored on a stack, then the branches are written one after the other, returning
to branching after each branch. Turtle masters only forward movement (F) and turns
around a fixed angle (+ and -). Saving the turtle position and direction and restoring this
state is symbolized by square brackets ([and). A simple plant with a triple branch can be
described by

axiom: X rule: X 2 F[-X][+X]FX

If this rule is applied several times, the plant can grow at the positions where an X has been
inserted. For the older parts of the plant to grow with it, arule F 2 FFis often added to
the rule system.

33 https://de.wikipedia.org/wiki/Lindenmayer-System

shoot with triple
branching

14.2 Create the Drawing Instruction

136

14.2 Create the Drawing Instruction

First of all, we need a rule system, i.e. a list variable rules, to which the desired rules are

added line by line as character strings. The character to be replaced is at the very front,

then follow -> and the replacement from character 4 onwards. The recursion depth, the

specified angle and the length of the drawing path are also assigned to variables.

'\create the drawing instruchtion

script variables h i k hit

set hi | to- .ralse

set k

14.3 The Stack Operations

We use a simple list as a stack for storing the turtle posi-
tions. Operations are only performed at the top of the list
- we already have a stack. Storing is usually done by a push
operation. We store a three-element list with x- and y-po-
sitions as well as the current direction. Use pull to retrieve
the last saved position and remove it from the stack.

When the
drawing instruction, we
start with the axiom.
Then we create an aux-

creating

iliary string h in which
the substitutions are
performed per run:
whenever a character
to be replaced is found
in the old character
statement, we append
the replacement to h.
Finally, h replaces the
drawing instruction and
the next replacement

cycle is started.

set stack | to list

insert [l [55¢ X position | y position | direction

pull position

~

script variables ' p

\

set p

to item @K of (stack
delete @) of (stack

Preferences

to list

set rules
add SFERIPIIPY to (rules
add Fid to (rules

to [§
set angle | to

set length | to [

set depth

The drawing state-
ment can be quite
long. Therefore
"warp" is used to ac-
celerate the whole
thing.

e~

at @K of (stack

14 Artificial Plants: L-Systems 137

14.4 Drawing the Plants

Drawing the plants is very easy because all our sprites can

be used as turtle. We enlarge our working area to 500x500 ~

script variables i

(select stage size... in the Settings menu) and let the turtle warp
draw the "foot" on which the plant grows. The character
string is then processed character by character using the

set stack [to list
character instructions, with the corresponding turtle opera- g0 to x: €D v: €D

tion or a stack operation being executed for each character. jmew down

set pen size to &)

As a small delicacy we draw the "tips" of the plant green. g0 to x: @D v: €ZD

(Peaks can be recognized by the fact that the next step is to |90 tox @ ¥: :..m
setl pen size to

return to the last turtle position, i.e. a pull operation follows.) [ot in direction >

set |
Examples:
All characters of the
statement are processed 7
v

Perform the appropriate
operation depending on the
character. Y

set rules | to list

w:
Colour only the tips green.

set depth |to

s\et angle | to

;et length | to [J set pen color to
else

set pen color to

move (length steps

set rules | to list

add to (rules set rules |to list
add to (Tules add SEOIERIRY to (rules
set depth | to [§ add to (rules
set angle |to set depth | to
set lenghh | to 7.5 set angle | to
set length | to ij

14.5 Tasks 138

14.5 Tasks

1. a: Searchthe web for grammars for L-systems. Create the appropriate plants.
b: Select a plant species, e.g. a certain tree species, and study its construction thor-
oughly using pictures. Pay particular attention to growth areas. Then describe their
structure using an L-system grammar. Check the result using the program.

2. a: Why are the grammars considered so far "context-free"? What does this mean for
the plants produced??
b: Check the web to see if grammars other than context-free are used to describe ar-
tificial plants. If yes: why actually?

3. a: Inthe program the tips of the branches (as "leaves") were dyed green. Replace these
green pieces with more beautiful leaves.
b: Transfer the principle to drawing the thickness of the branches. Just come up with

something!

4, Plants don't always grow the same: there are storms, raging children, hobby gar-
deners, weather disasters, ... Bring some randomness into play to produce differ-
ently shaped plants of the same type.

5. a: The stack operations were always performed at the top of the list. Could one also
take the end? If yes: why?
b: Would something change if you insert at the beginning of the stack and remove the
positions at the end? If yes: why?

6. The users of the L-system program can enter anything else as grammar. Check their
entries with a parser before trying to create the plant.

7. a: How would the rules for L-systems be changed if we wanted to create three-dimen-
sional plants? What did this mean for the drawing of the plants? Are there turtles
for three-dimensional drawing?

b: Find out about topics where artificial plants are used on the net.

8. Do they also draw artificial animals? Artificial people? If yes: where? How do they
do that?

15 Automata 139

15 Automata

A Snap! Build Your Own Bl X

C | @ Sicher | https://snap.berkeley.edu/snapsource/snap.htm|

h '& I3 Kevinspeaks

Y Cr—
[-

€ contral

length of B
L contains [T
[add I 0 B
| delete §ED of @

LI eaemail adressesxml ~ ~ Alle anzeigen | X

Contents:

¢ finite automaton as a predicate

e hyphenation and pronunciation

e coupled Turing machines and control structures

15.1 Correct Mail Addresses

We want to use a finite automaton (FA) to check if a mail address is correct. To do this, of
course, we must first know what "correct" means. We specify a syntax diagram:

mail address:
HEIO+OrO—-0—0—

In this simplified form, the participant names consist of the characters a and 7 (as substi-

tutes for letters and special characters) in an arbitrarily sequence, followed by the usual
@. The mail server name consists only of b, and - separated by the dot - follows as domain
name de.

For example, correct email addresses are a@b.de ala@bbb.de, 1@c.com would be

wrong.

15.1 Correct Mail Addresses 140

Translated into a finite automaton we get its state diagram:

is adresse correct?
script variables state i

set state to §Y

set state | to]
else
set state to]

Translation into a Snap! script can well be done as a predicate,
because the machine's response is frue (the final state S¢ has been

or { letter i of adresse |—f]

reached) or false (another state has been reached, typically the

error state Sy). In the script, the checked address is scanned char-

acter by character. Starting from the initial state So, the system

checks whether the current character is permitted. If it is, the sys- | set state |to
else
tem changes to the next state specified in the state diagram, oth- | set siste_|to §]

erwise to the error state. The script is quite long but consists only
of nested alternatives that represent a direct translation of the
state diagram.

s;et state | to 5
. . . *e
When checking the mail addresses, the predicate created can be e [CIF

used.

[LH01a@bbbb.de Je0 Ly (=1 ¥4

set state | to ZJ
else
set state to §]

set state | to 5
else

set state to §]

letter £ of £T 20D le|

set state |to 3

else

else
set state to]

15 Automata

141

15.2 Hyphenation: Kevin Speaks3*

Mealy machines can be used to implement simple hyphenation
that works surprisingly well. In addition, we want to get Sprite
Kevin to pronounce the entered words. The second sounds
more difficult than it is: if we have the syllables, then for each
syllable we can create an image with the mouth position whose
name corresponds to the syllable (e.g. AU.png) and record the
spoken syllable (e.g. as AU.wav). We drag these files into the
Costumes or Sounds areas of Snap! and call them from

there.

We start from the adjoining, very simple Mealy ma-
chine. Its input alphabet consists of vowels (v), con-
sonants (k) and other separators ({). It inserts some
separators for hyphenation, but of course it works
incompletely and partly wrong. It separates the
strings vkv in v-kv and vkkv in vk-kv. First of all, we
have to be able to enter a word into the program. For
this we use the command ask and wait. The result
is available as answer in the Sensing palette. This
word is to be separated.

Since users of programs never follow the guidelines,
we first make sure that only capital letters appear in
the word. To do this, we must be able to convert at
least one single character into uppercase if neces-
sary. We have already written the function for this in
Vigenére encryption, as well as the function for the
conversion of whole words.

A word converted to upper case can be similarly trans-
formed into a sequence of the characters v, k and t.
The vowels are easy to find, the consonants are letters
that are not vowels, the rest is treated as separators.
For practical reasons, a t-character is added last. This
means that at least one character is always present -
and we always reach the state 0 at the machine at
last.

34 based on an idea by Wilfrid Herget.

spitted CTITY

k/ 2
t/ kt
k/
Start v/ k-kv vi -l
viv
t/t t/t

| translate | word to v/v

k / kkk
t/ kkt

script variables result

set resull to(join result [

15.2 Hyphenation: Kevin Speaks 142

It's time to split the sequence. We read character for character v, k or t

and write down our automaton: Depending on the state, the next state is 0, word

specified, and characters are added to the output. script variables ' state | result | i

i . set state |to [

Attention: the states are handled by nested alternatives, so that after a : o

set | 0

change of state the following statement is not executed without a new
set resull [to |}

character being read in first!

repeat length of word

Finally, we must convert the vkt sequence back to the original characters to (lettes (i of (word
- with the separators between them. To do this, we run through the vkt
sequence with the separators (index: i) as a pattern and build the result

sequence from the characters of the entered word (index j). However, we e ElH
siate
only change j if i does not point to a separator (-) in the pattern

set resull to join result ¢

create splitted (word from template | template
script variables | result
set state to ¥

set result to [}

set i toff

to]

set resull to join result c

set result

set result

change |

change i

to join

by &€

by &9

state | to [

resull | to join result [J

report result

state to J

We can now use these functions one after the other to separate a word: resull | to ' join ' result Q]

script variables pattern

set pattern change] in capitals

set pattern translate] to v-k-t-sequence set state to g

set resull | to/ join | result
else

set state | to [J

if

set resull | to join result (i

else

set pattemn split vkt pattern

set spiitted create splitted answer from template pattern

split (word set resull | to join result [§

.

create splitted word from template

“‘f | to v-k-t-sequence ||

change i | by &P

report result

15 Automata 143

The words, divided into syllables, should be pronounced by the computer, similar to navi- Souna ReCore

gation systems, automatic time announcements or other "computer voices". If we store o) W () —
syllables instead of whole words, we need considerably less storage space, because the save) cancel J

syllables can be used several times. (But it doesn't get any nicer!)

First, we choose a few

Skripte Kastime Klange

Neuer Klang: P ——
. [meow ||

(here: German) words: s &

Autobahn, autonom, Au-
tomat, Pronom, Promille,
Kamille, Kamel, Kaktus.
For short syllables we can

use the built-in sound re-
corder. Or we speak the LS P W @ | Deameitnv Eiekiev
syllables (e.g. in Scratch)
into the microphone and
save the WAV files under

the name of the syllable in

00:00.00
Mikrofonlautstarke: D

capital letters. We drag
the sound files into the split (BN by B4

Sounds section of Snap!

Since the entered words have been separated (see above), we get (approxi-
mately) the syllables when we "decompose" the word. To do this, Snap! provides
the split by command. The block creates a list of the parts of a word. If we enter

Au-to-bahn and separate at the sign "-", then we get:

If our sound files have the same name as the syllables, we can play them with play sound
until done by selecting the syllable as input parameter of the block.

s e
play sound | change item @ of (‘split [VECETIN by 3 | in capitals until
done

We can let the computer pronounce words by

e separating the entered word

e and breaking it down into its syllables,

e from this list, "pronounce" the first element in
each case

e and delete it from the list

e until the list is empty.

-
gow ELLILY item @I of (Syllables) TLRLICIE

delete @ of (syllables
—
e

15.2 Hyphenation: Kevin Speaks

144

For each of the different syllables we draw a costume for Kevin.

AU TO BAHN
These costumes are displayed while speaking the syllables.

Words are pronounced by calling this script with the corresponding syllables.

'

script variables syllables splitted word
set spiittedword to | split word

set syllables | to' split splitted word by JKJ

repeat length of (syllables

of syllables 1

delete) of ' syllables

show | syllable
set speaking |to< true @
if - (syllable = [y

switch to costume AU

ﬁlay sound AU
switch to costume TO

switch to costume NORMAL

e

if syllable =
_r;witch to costume TO
play sound TO

switch to costume NORMAL

if © (syllable = LI

switch to costume BAHN

play sound BAHN
switch to costume MEL

switch to costume NORMAL

if - syllable = [}

switch to costume KA

15 Automata 145

15.3 Coupled Turing Machines 3°

If one describes Turing machines by state graphs, then the meaning, which is assigned to
this model, seems to the learners strongly exaggerated, because the problems, which can
be described by a still readable graph, are nevertheless quite simple. Much more powerful
tools can be generated in the model of coupled Turing machines, in which the initial state
of the next machine corresponds to the final state of its predecessor. More and more pow-
erful designs can be created from very simple systems. The result is a kind of macro lan-
guage in which topics of predictability and decidability can be formulated.

Our system of elementary Turing machines works on a Turing tape, which contains only
ones and zeros. The zeros serve as separators, so that numbers must be represented by
ones. The number n is coded accordingly by n+7 ones, so that the zero also has a code. In
the standard position, the head of the Turing machine is above the one on the far right.
All groups of ones must be separated by exactly one zero and there are two zeros at the
left edge of the band. After the work the machine is back in the standard position. The next
machine starts working out of this.

The 1- and 0-machines are available as elementary machines, which write the corre-
sponding character at the head position on the tape. That's all they're doing. The small left
machine | moves the head of the Turing machine one position to the left, the small right
machine r to the right. There is also a testing machine p that checks which character is
present at the current head position. Depending on the result, it branches into one of two
states to which further machines can then be coupled. That's about it.

Because they are often needed, we design two new machines, the large left machine L,
which runs to the left over a group of ones, and correspondingly a large right machine R.
These can be realized as follows:

L: Dpi» R: Dpi»
1 1

The copying machine K1 copies a group of ones to the right.

K1: L 1 J
p—»ORRI1ILL1I

o,
RRI

If the copying machine K2 copies one group of ones over a second group to the right, then

we can already calculate sums with the help of a Turingadder A by:
AK2ZK2L1RIO0IO0!

Give it a try!

35 from Eckart Modrow, Theoretische Informatik mit Delphi, emu-online, 2005

15.3 Coupled Turing Machines 146

Instead of testing the machines on paper, we want to develop a macro language in which
our coupled Turing machines can be realized. Since we don't want to use the normal Snap!
command palettes, we disable them after right-clicking on a palette (hide primitives). The
palette is empty after that.

For the simulation of the machines, we need a tape consisting of ones and zeros. We
choose a list fape, because it can be easily changed in length. For the display we create
some images with ones and zeros of different sizes, whereby the head position is displayed
in yellow. The working speed and the cell size should be changeable on the screen. Overall,
we need the variables initial caption, tape, tape length, pos, cell type and pause(ms).

The initial caption must be asked, and an appropriate band must be generated and dis-
played.

The default position must be taken on this tape, where the value of the variable pos is
determined.

switch to costume Turtle
go tox: y:
ask and wait

set initial caption

—

to answer

to list J

script variables i

| tape length

set i

The tape is then displayed by "stamping" images of the costumes side by side on the stage.

O find blocks... *F
hide primitives

Looks
Sound

Pen

Make a block

15 Automata 147

Altogether we get as start command sequence: | =iic T EIS T
g\o to standard position

To show the head position we calculate its screen coordinates and switch
to one of the yellow costumes.
if ‘celltype =[]

The elementary machines can now be quickly generated: S — =
go to x: | &ED + &L pos - &) v

if - (pos < tape length

change pos | by §B

LTI D

switch to costume null-akiuell-1

else
switch to costume null-aktuell-2

U (cell type =

switch to costume eins-akiuell-1
e

switch to costume eins-akiuell-2

wait pause(ms) / §[P secs

show head

replace item (pos of (tape with |J

switch to costume null-1 switch to costume eins-1

switch to costume null-2 switch to costume eins-2

show head

The generation of the testing machine p is somewhat more complicated, because it must

be able to execute two different scripts - depending on the tape letter. These scripts must Use programs as data:
therefore not be evaluated as parameter values BEFORE the p-machine call is executed, C-shape code

but two scripts are passed, which are to be executed AFTER the call, depending on the tape

labeling. The "parameter values" are scripts. When typing the parameters, we select Com-

mand (C-shape) to prevent the evaluation. The parameters are identified by a A as

scripts.

-1-> | scriptl A

15.3 Coupled Turing Machines 148

With these machines, the others can be
developed "normally recursively" in Snap! u

as blocks.

o

7

N

S A

10

ol
[

Instruction set of the

The work of the machines can be monitored and thus checked on the screen. So after that Turi .
uring machines

they are used as new blocks for more complex problems.

A Snap! Build Your Own Bl X

C' | @ Sicher | https://snap.berkeley.edu/snapsource/snap.html ﬁ'l :

1 & i+ coupled turing adder 'y B 2
{ contral - .)
j 1 ."’_ cell type n [pause(ms)) Make a variable
P A [7 draggable l = —
Soripts Delete 3 variable

Operators
{ Variables

Make a biock

Costumes Sounds

ofo[1T1Tol1[1T1ToT11T1[1I0ofolofolofolofolofolo

15 Automata 149

15.4 Cellular Automata: Iterated Prisoner's Dilemma3®®

We want to build a cellular automaton based on the prisoner's dilemma?®’, but slightly
modified for trading on the Internet. The behavior of the trading partners is simulated by
machines that sit on a grid closed in both dimensions. They trade with the partners within
a Von Neumann neighborhood. As is usual on the Internet, they exchange goods for money.
There are different types of business partners:

e Naive always cooperate, i.e. provide the correct equivalent value.

e Fraudsters never cooperate.

e Shrewd people cooperate at first and then react in the same way as their partner

did last time.

We describe the behaviour of trading partners using state diagrams:
K,K v B,K K,Bv B,B K,K B,B

K: ,,cooperate” ' ' .
B.K
B: ,cheat” c °r—4°
K,B

The ,,naive” The ,,fraudster” The ,,shrewd”

If we arrange such automatons in a grid, distribute them randomly and color them
according to their state (green as "naive", red as "fraudster" or yellow as "shrewd"), we

get an image similar to the following:

(generation (TN)

36 from Eckart Modrow, Zelluldre Automaten, LOG IN 127 (2004)
37 https://de.wikipedia.org/wiki/Gefangenendilemma

15.4 Cellular Automata: Iterated Prisoner's Dilemma 150

The further procedure is simple: First all partners trade once with their neighbors from the
Von Neumann neighborhood, i.e. with the neighbors above, below, left and right. After-
wards all partners evaluate the success of their neighbors. As opportunists, they take over
the status of the most successful neighbor or maintain their status when they were better
themselves.

In the first generations, the "fraudsters" usually prevail. But then clusters of "naive" or
"shrewd" people form and a wild "battle" begins.

(_generation (EIN) (generation (T)

(generation (EEND)

It is true that the "naive" are hard pressed by the "fraudsters". But they do quite well in
groups. The "shrewd" usually prevail over the "fraudsters" - depending on the configura-
tion - and cooperate with the "naive". In the end, the "shrewd" usually win - but not always.
In groups, the "fraudsters" cheat each other and win nothing, while the "shrewd ones"
assert themselves against them and are more successful with the naive "behind their
backs". The processes depend strongly on how the different behavior is weighted.

Global variables are suitable for evaluating the system, e.g. a "gross national product" as
the sum of all trading points. Observing the sometimes surprising processes provides start-
ing points for discussing ethical questions. Even if the example cannot, of course, be di-
rectly applied to social systems, for most people we have found a new argument for coop-
erative social behavior, which is not derived from transcendental or philosophical consid-
erations, but from efficiency. It is in clear contrast to the egocentricity of primitive Darwin-
ism, which often dominates public discussion in this respect. A diagram may serve as an
example in which, on the one hand, the total numbers of the three types of automata
(naive, fraudulent, shrewd) were plotted, and, in addition, the sum of the total trading
points achieved by all types, i.e. the "gross national product", is somewhat thicker in blue.
One can see very nicely that "social prosperity" (if one wants to derive this from the "trad-
ing volume") is contrary to the number of "egoists" - of course under the conditions set.

15 Automata 151

Among them, fraudsters usually die out for lack of success, and the naive harmonize mag-
nificently with the shrewd - if they are among themselves. If the behavior is weighted dif-
ferently, fraudsters can be quite successful. So, it depends on the rules of the game who
succeeds. You should think about them, not just in a simulation!

From a programming point of view, the system is rather simple, but sometimes extensive
due to the change of viewing direction.

A new automaton can be described by a list of lists,
whereby the automatons at the grid places
correspond to sequences of numbers, which contain
on the one hand their state and the reached trading |+ bl 250

R n n an automat is described by the list
points, on the other hand the "memory" about the "l - (stat:, mat ;me. pgims‘ uym. I
past behavior of the neighbors. s N =t bottom left, right). The last four

‘ values include the behavior of the
repeat | nMax neighbors on the last move. Y

N =
set row to list

15.4 Cellular Automata: Iterated Prisoner's Dilemma 152

The cellular automaton can be displayed by
show ' automaton :

stamping different coloured costumes (small

rectangles) next to each other on the work area. This =20l 2R S g 21
has been changed to the size 800x600 pixels before.

Once the machine has been created, the new gen-
erations are created from the last generation in
each case.

set state to item @D of | 1) x (Ui item (y of (automaton

delete points
all are trading
all change state

state =]

Show automaton

cout states

switch to costume witty

else
switch to costume cheater

change generation

-

The scripts have a very similar structure: a Il grid locations are iterated.

all change state delete points

script variables x 'y s;cript variables x

cell x 'y changes state

+ replace item) of | 1= i item (y of (automaton
change x | by B

change x | by &P

change y by &P
all are trading

script variables x

replace item & of | i item 'y of (automaton with

&X i item(x of| y automaton

change x
cell x 'y trades with neighbors

éhange X

15 Automata 153

The trade of a cell with its neighbors depends on the one hand on the states of the partial
machines, and on the other hand on their previous behavior. Since this data is stored in
the machine values, it is easy to retrieve. Shown is the trade with the left neighbor:

cell (x# (y# trades with neighbors

§cﬁpt variables
xp ‘yp | cell | neighbor ' neighborCooperates ' cellCooperates

determine cell Fo s R E R d item y | i automaton

. set to (7
Torus world: the opposite edges are con- L =

set xp to' ' x

nected.

& xp <0 leftneighbor

determine neighboring cell ;
set xp |to (LU
set neighbor | to 1) yp ui automaton
is the cell cooperating? [s e
<\ item @K of (cell
€ item @D of (cell =7 L1 F item F of (cell = 3

is the neighbor cooperating? [ot
¢ item @K of (neighbor | [

¢ item G of neighbor T item @D of (neighbor

save neighbor's behavior "for later” | e
replace item B of (cell with J
else
replace item B of (cell with [J

if they both cooperate: | (i)

profit between 2 and 10, | if

nothing else replace item &R of (cell with
item EP of (cell I

the neighbor is cheated: | if € IZIEmTTED

profit between 1 and 20 replace item) of (cell with
oY “X 1) vick random /T to /20 |

cheat on both of them:
replace item EE) of (cell with

almost no profit item @D of (cell +l Ll laD aD

Trade with the other three neighbors is almost the same. The differences are only in the
positions of the stored behavior.

15.4 Cellular Automata: Iterated Prisoner's Dilemma 154

Once the values of a generation have been determined, they can be counted and compiled
in a list - and this results in a diagram.

~Zihle die Zustinde .
draw diagram

script variables ‘'n ('t b (x (y N -
-, script variables i values oldvalues

clear

set pen size to P

set pen color to

pen up

go to x: @D v: €D
pen down

go to x: y:
[LRCREN 350 BN -250 J
seti tof]

set zustand |to item @B of (1) i item(y of (automat set oldvalues |to item @) of (table

-

if ‘zustand =

| change n | by B
I

i > length of (table

set values to item (i of (table

set pen size to P

set pen color to
change t | by B

else
change b | by B

"pen up

go to x: | &P + Ji -6 v
m+\hemmol oldvalues |/ &)
ipendown

go to x: | L + 6"}1 iD= | PR
€ED + | item G of (values) /.75

set pen color to

“ul X (i item(y of (automat

change y | by §B

"pen up

oolox:@+‘6';1 i -6 v

Table view €ED + | item @D of (oldValues [/&P
36 A B e D pen down
1 Nave | TiForTat Betriger | Gesamt 90 to x: (€D +(GT: @) v
2 am 443 1575 44855 S —
3 290 420 1790 26006 CED + || item @ of (values VALY
4 242 | a6 | 1782 17350 B
5 197 564 1739 15422 :
| | pen up
6 185 535 1680 13764 .
7 150 741 1609 13099 swtox D@l -@) v
. L o e Lok €ED + | item EP of oldValues >1:/ (5 N
9 129 931 1440 13416 ,
10 124 | 1043 | 13;3 13375 " pen down
n 118 121 1261 14152 =
2 131 18 1180 14810 g0 tox: | GID +(EBLLT -~ @) v:
13 127 1282 1091 | 16339 =D + [item € of (values VL&D
4 137 1301 1062 17407 '
15 171 1348 | 981 17907 | setipen sizeitn €D
16 164 1434 902 19298 set pen color to
17 214 | 1458 | e 19904 pen up
18 198 1493 809 22188 : e
19 211 1535 754 23016 gotox: | GID +(EBLL1 -~) v
20 230 1586 684 24373 &ED + | item €K of (oldValues [/ 7150
21 231 1641 | 628 25108 E -
pen down
2 2% 1700 561 26407 '
23 238 1780 482 27386 swtox D +@ i -
24 2% | 1820 am 20028 T T —
25 255 1832 413 30572)
—_— set oldvalues | to K2

change i | by €9

15 Automata 155
15.5 Tasks
1. Develop a finite automaton as a predicate for detection

a: correct license plates from three different cities.

b: correct IBAN numbers. You can limit your search to a few banks.

c: passwords of sufficient complexity. Define beforehand what "sufficiently complex"

means.

2. Improve hyphenation by taking into account

a:
b:

double consonants.

typical prefixes.

3. Develop and test a coupled Turing machine,

a:
b:

that copies one group of ones over another (K2).

which pushes one group of ones to the left to another until the groups are sepa-
rated only by a zero.

which multiplies two natural numbers with each other.

which writes a 1 after two groups of ones, if they are the same length, otherwise a
zero.

that subtracts two natural numbers - if that's possible. If she doesn't, she'll go
crazy: she'll run away to the right.

Replace the trade of all partial automata with the neighbors "per round" by a ran-
domly controlled process in which machines trade with neighboring (with any)
partners.

Replace the Von Neumann neighborhood with a Moore neighborhood.

The machine can easily be converted to an Ising model by considering the ma-
chines as spin grids. Per round, the majority of the neighboring spins tilt the spin in
the middle in their direction. There are various magnetized areas.

Find out about Stephen Wolfram's linear cellular automata.
Implement the model.

16.1 LOGO for the Poor 156

16 Projects

16.1 LOGO for the Poor

Contents:

1. simple text-based programming
2. parsing

3. interpretation of input

We want to develop a small programming language that we can use to write programs for
a turtle - that is, for every Snap! sprite. The project should show how a text-based lan-
guage works and how the error messages are generated. We reduce the problem a little
by allowing one-letter commands only. If we look at the possibilities of the pen used in
Snap! and select some of them, we get a possible command set (very small here):

Mn moves the turtle by the distance of length nin the current direction
Tn rotates the turtle on the spot by n degrees

U lifts the pin

D lowers the pin

We add a control structure to these four commands, here: a loop - and the minimal version
of a programming language is ready.

Rn{ drawing commands }

We cast this rough sketch in the form of syntax diagrams: A turtle program consists of a
sequence of commands separated by semicolons. The program ends with a double cross

control instruction j %@—>

drawing command

sign.

turtle program:

A 4

\ 4

),

control instruction:

A 4

The syntax diagrams
can easily be extended
by additional com-
mands.

drawing command

M
N

¢

number ~>®

number »

drawing instruction:

number —»

GOOC

number: natural numbers

Programs are e.g.. D;R4{M100;T90};U#
M100;T90;M100;T90;M100;T90;M100; TOO#
D;R180{M200;T183};,R360{M1,;T1}#

) 4

()—

16 Projects 157

We assume that superfluous characters such as spaces are removed from the program
first. We can achieve this, for example, by converting entered lowercase letters into
uppercase letters and allowing digits and the four special characters ";", "#", "{" and "}".
All other characters lead to the error message "ERROR 1: Wrong character in the input!".

get command
script variables input result i

L Y F nter-a-turtie-program! EEERWET
set input to answer
set result | to |

seti tofd

repeat until 1 > [g 107 input

i { unicode of |

| { unicode of (-
_ £

set resull to

join

T8 unicod: | Jle [N F jetter | of input o 32]

-]

¢ unicodeof [[: 7 i | i input > [64] U0 .
if S ———————————————————— uppercase letters y/
¢ unicode of [g i JJf input 91

set resull | to! join result | r €D of inputﬁ

else
) o T —

¥
lntbns I ~f £were - b
““F’ Q umicode of | i Ui input iy and ViRg
i‘s" unicode of (.02 i i input) |2 55

set result | to join result

input - Dr 2 ¥i of inputr = |

i inputr i Ui input =

four special letters

set resul [to! join result (([S:&0 0 U7 input

else

set result | to

set i to ' length of input

change i | by §B

|;eport result

A simple input method
with character control.

16.1 LOGO for the Poor

158

The input must be checked to see whether it represents a permitted LOGO program - it is

"parsed". In this case we can develop the parser as a finite automaton3®. The unspecified

transitions lead to an error state.

Ovlv..v9

In the individual states we can decide which signs
lead to subsequent states and which do not. This al-
lows us to indicate which characters were actually
expected in the event of incorrect entries. If we num-
ber these error messages of the parser in the order
of their occurrence, we get the adjacent table.

If we also evaluate the position of the character in
the command where the error occurred, then we can
even display the error.

state possible error message
So, Se 2: unknown command
S1, S10 3: <;> or <#> expected
Sz, S4, Sg 4: number expected
S3 5: number, <;> or <#> expected
Ss 6: number or <{> expected
S7 7: <;> or <}> expected
So 8: Zahl, <;> or <}> expected
9

: unexpected end of input

The translation of the parser consists only of a very long copy of the state graph - of nested

alternatives.

38 Why is that, by the way?

16 Projects

159

parse | program

script variables char i state result
set state |to Y
set resul to [

seti tofd

repeat until ' ¢ i |~ length of program or ¢ “result > |0

set chart to letter i of program
¥ state =

set state | to

else

if char

set slate

if char
set state
else

set result

state = [l

char = § J

set state to
.
|
char =g
set state to 2
else

set resull | to]

<The rest of the state diagram.

if 570 e

set | to ' length of program

-

Cil.dn()(‘. i | by &P
if state =

4 list (result

—

report list [[i

report list (result

The parser parse <program>is
guided through the state dia-
gram by the character string of
the program. If there is no per-
missible transition in a state, it
reports the corresponding error
by the value of the "result" vari-
able.

Correct programs have the
value 0 as a result.

16.1 LOGO for the Poor 160

The interpreter run <program=> can assume that the entered program is error-free - after
all it was parsed. Therefore, it can take the first character of the program one after the
other - this is the next command - and delete this character. Depending on the command,
it executes this and searches for the required parameters, e.g. the angle of rotation. All
processed characters are deleted. This ends when the program consists only of the last

character — the "#".

run program

. The program is processed charac-
script variables command number ' loop content
repeat until < (i program) < 7 characters are deleted. We used
set number |to i the function
[all but first letter of <string> of

the library words, sentences.

ter by character, the processed

set command | to letter §J) of program

set program | to all but first letter of program

PenUp command (U)

PenDown command (D)

or { letter &P of p search for a number

set number to ;

| unicode of (_:_/ &I /i program) | unicode of [] |

set program to | all but first letter of program

turn ((number = degrees Turn command (T)

if command =[]
move (number steps Move command (M)
else

set program to ' all but first letter of program
to il run the loop (R)

set loop content

Search for loop contents until the

next "}"...
p————————
set loop conten | to | join | loop content ([&P i program
set program | to all but first letter of program
set program to ! all but first letter of program
run | join loop content § ... and execute as often as the

number indicates. Append a ";
to the loop contents.

set program to all but first letter of program

16 Projects 161

If we output the error messages in plain ‘
text, then our programming language will show error | result :
slowly become usable.

script variables ' error text nr

We can evaluate programs through a short [E-s CIEEW 1T I o1

=,

script. if

nr

set emortext |to

e ——
if- ‘nr =§

set emortext | to SRl i LIa Gl

o

if nr =[]
set emortext | to IVRECRETRCEE

go tox:) v: €D

point in direction K

set theProgram | to get command

set theResull to! parse theProgram

.

if item @B of (theResult =[]

nr = [

o A (g ol number,s<;>+or-<#>+expected

run theProgram

-

else

f;how error theResult

-

= —

if ‘or =
L7 A (g il G linumber-or-<{>expected

~

.

if ‘nr =§

ERROR: 5 at L A R e D<= ore<}=eexpected

position5: number,
<> or <#>

expected if nr = H

7= 3 (g ol (O linumber,«<;>+or+<}>expected

—~

if ‘nr =
Lo A (g -l G junexpected-end-of+inpu

=

say | join [HGILR] (nr item SR of (result

16.1 LOGO for the Poor 162

Actually, it is a bit strange to develop a very primitive text-based language in a graphical

programming language. However, experience shows that learners usually combine the

work of computer scientists with the development of cryptic texts - i.e. they sometimes

want to program "really". We can accommodate this wish if we use such a mini-language

in a standard field of computer science, in this case automata theory. Since we develop it

ourselves, we promote understanding for the processing of texts, which takes place on

many levels in IT systems. In addition, we have found a highly differentiating topic suitable

for division of work and challenging activities, which quickly leads to presentable results.

Tasks:

1.
a:
b:
c:
d:
e:

2.

3.

4.

Expand the language LOGO by

a Home (H) command that sends the turtle to the center of the screen.

a Clear command (C) that clears the screen.

a Color<n> (Fn) command that allows you to select a pen color.

a command TurnTo<angle> (Nn), which rotates the Turtle to a certain angle.
a command MoveTo<x><Y> (Vx,y), which sends the turtle to a certain point.

Develop a scanner that allows you to enter the turtle commands in long form, for
example, to write Turn 90 instead of T90. The scanner should recognize these
commands and output them again in short form.

Introduce an alternative: Depending on the color of the pixel at the location of the
turtle, it should be possible to execute different command sequences. Reduce the
syntax appropriately and implement the command.

Two types of loops are to be introduced in this way: The turtle should execute
drawing commands as long as (WHILE) or until (DO) the turtle is above pixels of
a specified color. Allow position-dependent predicates as well.

16 Projects 163

16.2 SnapMinder by Jens Ménig*°

Contents:

e import and visualization of large amounts of data
e advanced list operations

e connection to socially relevant issues

The program is based on data from the
Gapminder Foundation®, which pro- Life expectancy, years
vides tools for visualizing statistical
data on the Internet. One of these
shows the development of the coun-
tries in the recent past, whereby life
expectancy is represented above in-

come and the size of the "bubbles"
corresponds to the total population of
the country in one year. If you move

Income per person, 5/year (CDP/capita)

the slider, you can impressively follow
the temporal development of the °
countries in this coordinate system.

The data used - and many others - can be found in tabular form at https://www.gap-
minder.org/data/

3% With permission of the author, available at snap.berkeley.edu/run#pre-
sent:Username=jens&ProjectName=SnapMinder
40 https://www.gapminder.org/

16.2 SnapMinder by Jens Monig 164

16.2.1 Importing Table Data

To import the required data, we load the file into a spreadsheet program and immediately
save it again as a tab-delimited text file. Let us take CO2 emissions per person from 1751
to 2012%! as an example. For the first years we find only a few values, but then it gets
dense.

We read the generated text file into a variable via its context menu (import...). To do this,
it must be displayed in the work area. We get a very long string of characters.

ML T RGN CO2 per capita 1751 1755 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1114 ATI5 AT76 AT77 177817791

We turn them into a list: set importierte Daten | to [split | importierte Daten by Cl v

~ importierte Daten
CO2 per capita 1751 1755 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 ..

Akrofiri and Dhekelia
Albania =

d

Each line again contains a character string with the B Q'

set daten |to list

separated by tabs. Therefore, we "hack" the listline =
seti |to]

data for each country, whereby the data are

by line in the same way, but with a different » —
repeat until - ‘i > length of (importierte Daten

separator, and add the sublists to a new list \
variable called daten. add | split item (i = of (importierte Daten by FEd to (daten

change i | by §P

This provides the raatn

d t f 238 BEBBEBSBICCCCCCCCDDDDDDDT EEEEEEEEIFFFFFFFFF GBGGEGGHHRHEHHE I JJJJJJI0Id lﬂﬂﬂﬂﬂﬂﬂﬂ*
necessary ata or 1 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

editing in Snap!.

0071144382 0,06410684 0,05796475¢0,0523333650 04854668¢0,037446030,0241700070,02725526:0,0145834270 022703695 ‘

2

3

4

5 0,60660539:0,6642042670 6479048420,40926118£0,56922559:0,97134194°0,98355304£1,0473201541,2140030711,38206627 1,4
6 3111325685 33467306 3,3542392873,0156704213 60825764¢3,0602446112,87952767¢2 7204533112,88831278:2,80023627-25
7

8 6,2006690086 52028170447, 0616028557 5335429448 0227136518, 1123454127 8977757647, 7005151347 414281032 _
9 0,33129069°0,90961623:20,84241267°0,57699056°0,55621245{0,6776165310,68507907 0,67633919:0,85052139:0,5878 1021
10 1,78966540:2 45355765¢2,3927 161942, 0815684863, 18896039¢3,05479185¢3 21432366«
11 46590427764 7007177344 5800804354 6643252864 4974614724 5842381174, 4383778074 353775865 4 50892469 4, 7563104748
12 3,58332574°3,5155865013 66156335¢3 77057075 3,80967752 3,0811413083 810603703 5552853523, 2730670833, 5020022244
13 []‘!3014?31121,USZBQD?EEU‘821831Uﬂ!l,ﬂdSEﬁﬁ?EH‘U‘JSSUDTEI.U,BES‘J.MZHH,125427[}5’1,155322?3][],9‘342!]5?[141,12!}1ﬁ?565

14 229757779122, 1854263:21.8051650¢21,7431206610,2144532¢10,0294204°24 7366263£24, 2160461123, 838217223 277 4193%;

41 CDIAC: Carbon Dioxide Information Analysis Center

16 Projects 165

16.2.2 The SnapMinder Data

The program contains the required data as described above in the variables income data,
life data und population data.

Total population,1800,1810,1820,1830,1840,1850,1860,1870,1880,1890,1900,1910,1920,1930, 1940, 1950,1951,1952,1953,1954,14

=i 0 EE T geo,1800,1801,1802,1803,1804,1805,1806,1807, 1808, 1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1

Life expectancy,1800,1801,1802,1803,1804, 1805,1806, 1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821

It prepares them for further use with the help of higher order list operations from the
Tools library®2. As an example, we show the population:

set_popuiation | to Convert the population data into a list
keep items such that

AEZZEXT soin input list:_all but first of B) (here in "one step") and throw out

e — "no. . . "
(] (piit W by =K 1 <plit population data by [those "without interesting content".

=t poputafion_|(I0 B Use only data from existing coun-
| &Y i population) in front of .
— = - tries.
tems such that countries contains
all but first of (population
set population | to Sort out unusable data

&R i population) in front of (n no numbers")

f E in front of

101 | v eep items such that (<is [a number |2 from (split] by
over H

27=7 all but first of (population

.f;et population data- clean | to
combine items of Format
1)) | combine items of B with |(Goin lf § B /-1 population

data separated by
commas and with CR between the
with (G NEED) lines as population data - clean.

set population | to

The operations are very compact due to their nesting. ST

[}
| X
i
M
H
|
m§
| W
|
|
[}
i
/|
o]
0
n

max population

 min fife

min population

 population

i population data
 population data - dlean
(population year index

scaling

If you take them apart, they are easy to understand. 7 length ‘ '

Let's take the first nested block as an example. It can

be read "from behind" as:

- Split the population data, stored in a string separated by line feeds, into a list. Split this
list again. The contents must now be separated by commas (csv format).

- Delete from the result all entries where nothing comes after the first entry.

- Assign the result to the variable population.

42 Jens Ménig uses a little trick: If you move the block of a list operation over the join block
from the string operations, which is displayed "empty" €Z® | j.e. without input parame-
ters, then it turns into the join input list-Block , which converts the
list into a simple string. The function can also be easily written by the user.

(map (&7 L. overe X

16.2 SnapMinder by Jens Monig 166

The program starts with three messages, which cause old country sprites to delete
themselves, and the other objects, especially the data lists, to be initialized. For the data,

broadcast remove all and wait

it works like this: broadcast initialize and wait

when I receive initialize
el income i Process the data as described

keep items such that

I 71 join input list: all but first of § | > from above.
3 - = & First the income, ...
LIl (split Jjj by 9= split income data by [[X4

set turbo mode to v@

keep items such that

[0 # join input list: all but firstof B || > (3 ... then life expectancy, ...
set life | to - =

| LTl (split | by 9= split (life data by

... and extract the countries
from it.

set counties |to map [item @D of B | over (11015007 life

set income | to
&K i income | in front of

Assign the income to the

countries contains (1 .
countries.

| all but first of (income

set countries |to map | item @) of H |~ over all but first of (= .

set life | to
life)) in front of Same for life expectancy.

countries contains (1

| all but first of (life

:';et population | to .)
keep items such that Write back the populatlon

115N join input list: all but first of | > . from data from the auxiliary vari-

——— ' able.
split Jj by uiZs split population data - clean by

miniife | to Y

maxiife | to £ Set some variable values.
maxincome | to P

min population | to [J

max population to
maxcol | to Pl

script variables years i idx last found idx
set years | to all but first of a of DolJlllaitiOin EXtraCt the yearS.

set populationyearindex |to list

repeat max col Create a list of years as an index.

set idx | to first index of (i + &E[J in (years

set lastfoundidx | to (L3

add (idx to (population year index

else
add (last found idx to (population year index

16 Projects 167

16.2.3 The SnapMinder Countries

At the start of the program as many country clones, represented by a semi-
transparent rectangle, are created as countries are included in the country
list. Each clone has its own index idXx.

when I receive show all
set ghost | effect to P

set size to P %
The main function of the countries is to position themselves in the coordinate [isa i

system of average income and life expectancy in relation to the year under
consideration. For this ... length of (countries — &P
create a clone of

change idx | by &P

9 go to data slot (slot # scaling (scaling ?

script variables dollars years new size

set dollars |to item (slot of 0 Cidx +or Jj income they_determlne these data
for their country, ...

broadcast slider changed

set years |to item (slol of [l (idx + & Ui life

if (length of dollars | |fl) and { length of years
g0 to x: ... determine the position ...
left +

{ 100 of (doltars |
f]og of (max income LAQEIED) [/ 100 | of €D

y:
bottom +

[' (years | min life) / [ma — min life) .4 top - bottom

" right — left

set newsize |to ... and their size, which is

—2)= given by the population of
the country in the year un-
der consideration.

item || item | vae of Slider + &P of population year index + &P of

1=yl (idx + &) Ui population
/(i i max population)

max size — min size

.

if - not { new size |- size |

set size to (new size %

This block is called, among other things, when a plot of the country, i.e. the movement in
the coordinate system with the year as parameter, is generated.

9 plot track

script variables ' slot

set slol |to K]
9 go to data slot (slot scaling @ x

set pen size to &P
pen down
repeat i
change siol by &P
9 go to data slot (slol scaling @ -

¢ go to data slot | value of Side + &3 scaling @ x

16.2 SnapMinder by Jens Monig 168

16.2.4 Use SnapMinder

The presentation is impressive because, on the one hand, the countries move from bottom
left to top right in the course of time, i.e. they develop positively. But if you take a closer
look at some countries, this development is by no means continuous: there are abrupt
downward swings, backward movements, circles, periodic movements,... The program
gives rise to research into the causes of these developments, and there are a few surprises!

We show plots of some countries, then you should research!

USA Germany

China India

Norway Somalia

16 Projects 169

16.3 Connectivity: The World is Small*?

_nodes mJ |_scalefree | [10nodes | [10links | | new |

(tinks @0) [asanode B| [onenode | [onelink | [diagram]

Contents:

1. topology of networks
2. extensive operations on simple lists
3. socially relevant issues

The handling of networks is often reduced to protocols and other technical details. But you

can also ask other questions, e.g. about the connection of networks.

¢ |f we have n nodes, how many links do we need for the network to be largely con-
nected?

e Or vice versa: How many and which nodes must be destroyed for a network to break
up into its subnets?

e Or: What is the mean distance, counted in links, between the nodes of a network?

Nodes and links can be very different in nature. It can be e.g.
e technical links between computer systems,

e customer/supplier relations in the economy,

e the logical connections via linked websites,

e social relations between persons or groups of persons

e hydrogen bonds in organic compounds,

e neuronal networks

e orinfection chains.

4 from: E. Modrow: Informatik mit Delphi — Band 2, emu-online, 2003

16.3 Connectivity: The World is Small 170

16.3.1 Random Networks

The starting point for such questions were Random Networks. They are created when we
build N network nodes (or pages, ...) that we subsequently link to each other. Let us take
the Internet as an example. If there are N pages with on average K links per page, then
with n mouse-clicks k" pages are accessible. We can reach virtually any page if itis: K” = N
2> n =log N /log k. With 5 billion pages and k = 7, n = 11.5, i.e.: with about 12 mouse
clicks on average, you can visit any page of this network. Similar considerations and prac-
tical studies have been carried out on social relations, etc. They can be found under the
name Small World Phenomenon*.

If you display the distribution of links per page, you get [[I Looe Lo
a Poisson distribution for Random Networks. (Lot EED) L onepoce | [onetie][digem]

number of nodes
4

It is somewhat more difficult to decide whether a net-
work is (largely) coherent, i.e. whether all nodes are
connected to each other. We can answer this question

by coloring: start with one node and color all the nodes

that can be reached by it in the same color, then a co-

herent network shows a kind of phase transition: al-

most suddenly all nodes take on the same color.

You can see that the network - with the exception of a

few slips - is coherent if the number of links roughly Tk ey gt

corresponds to the number of nodes. Further links do little to change.

T o e e N | o (G s e o A | T 0 [mmien] [t | (ot | [oee]
(cs) o) [eesere | ek] g | [T (s @) ol Comesene | et | [

O m o

KKKKKKK) [mndn] [0t] (100] (o]
[T =

4 https://de.wikipedia.org/wiki/Kleine-Welt-Ph%C3%A4nomen

16 Projects 171

16.3.2 Scalefree Networks

Albert-LaszI6 Barabasi®® showed in 2002 that growing [(uoien 20)[ceires | [105een | [10tnks |
(Links [T) [als Knoten®] [eine Seite | [_einlink | [Diagramm

Anzahl der Knoten
iy

networks like the Internet have a different distribu-
tion of links per node than Random Networks. It can
be described by a Pareto distribution. Brief descrip-
tions can be found under

http://barabasi.com/f/623.pdf or]
http://barabasi.com/f/624.pdf.

A Scalefree network can be created by alternately
adding nodes and links where the new nodes have
two links to existing nodes. The older nodes are more

likely to be linked than the younger nodes. Because inks/knoten

the network is always coherent, there is no need to
color contiguous nodes. But we want to make the size of the nodes dependent on the
number of their links.

=)]

) Coaiies | [ioseien] [0] (o]
[E =1

Scalefree networks are the same on all scales, i.e. numerous nodes with few connections
are connected to a few nodes with many connections, so-called hubs. The connections
between nodes normally run from the start node to the next hub, then via a few more
hubs to the target node. Hubs can be, for example, people with many contacts (teachers,
representatives, ...), central computers or distribution centers in merchandise manage-
ment.

Scalefree Networks are extremely robust against technical faults. For example, if a network
connection happens to fail, it probably does not affect a hub, and if it does, other hubs will
compensate this. However, they are also extremely susceptible to targeted interference.
If only a few hubs in this network type are destroyed, the network disintegrates into its
individual parts.

45 A.Barabasi: Linked: the new science of networks, Perseus Publishing 2002

16.3 Connectivity: The World is Small 172

The topic is suitable as an introduction to discussions about vaccination protection, pre-
venting the spread of diseases, influencing political opinion-forming, optimizing the flow
of goods, ...

16.3.3 The Implementation

We want to create a fairly simple model as a tool for researching network [s ' e
properties. It is essentially based on a node from which clones are gener-

A
L)

WO N DU R W

L]
-

ated and two lists, of which the node list contains the nodes already gener-
ated and the link list consists of sub-lists with the numbers of the two end
nodes of the links. With their help, methods can be implemented largely
independently of each other. They are used by the operating elements
shown. The controls depend on the selected net type (random/scalefree)

D 0~ @t o W

and the display of the nodes (rectangular/round with different sizes).

-
=
ok
£}

-
No=
-
-

b
~
M= a2 mlaaw N alas

B
2
3
3
4
4
5
5
6
]
7
T
8
8

-
w2

#f* ' costumename | of bTypeOfNetwork Buttons for SWitChing _?f_j

between net types or for

switch to costume bScalefree

o [r— creating 10 nodes react to

node list and link list

mouse clicks:

else
switch to costume bRandom

set typeofnetwork to [ENLEI

add I/asll Node |for (@ mew node | of Node

|

change nodes | by &P

Since we often have to iterate over such node lists, S el

show all nodes

we introduce a new control structure that exe-

cutes an instruction for all objects in a list:

tell all objects of (st :

script variables (i This makes it very easy, for example, to
display all nodes:

repeat until - ‘i > length of (list

i CEYOEICED = G

script variables (1))»|
_create links per node Links pro Knoten

tell all abjects of (nodelist to 9 show of Node

16 Projects 173

New nodes are created by cloning the prototype.
. 9 new node
The prototype can be asked to perform this

script variables ' new

action. 4
change index | by &I

go to x: (pick random @LIP to LD v: (pick random ELP to &P

?F costume round

ask Node ' for (Q new node of Node

switch to costume circle-gray

set size to P %
else

switch to costume square gray

set size to [P %

set new tola new clone of mysell

run || set index to] | of (new |with inputs index

A new link is inserted into the network by trying to find two nodes that are

not yet connected. The link list must then be searched to see if the link bt e SRS

already exists. If not, the search returns 0.

This allows the ends of the link to be determined. Since the resulting nets [Esissssg
are quickly becoming large, the search for them does not take too long. lseti |tof

repeat until- ‘1 > length of (list

‘insert a link
insert a lin ¥ jtem(i of(list = element

script variables | nodel | node2 ' costumeno ‘nl1 | n2 set index |to @

) change b
set found | to < @ faise ge i by €D

™

if * ' length of (nodelist > fJ

set n1 | to | pick random) to length of (nodelist

(:ep;)n index

set n2 | to| pick random &P to length of (nodelist

seti tof]

set n2 | to| pick random) to length of (nodelist

L& ‘m1 =(n2 and

set found |to! [index of (52 n1 | n2 |} in (linklist

index of ([ni) in (Tinkiist

change i

insert a link from nl1 to n2

16.3 Connectivity: The World is Small

174

Once you know which nodes are to be
connected from a link, ...

then the affected nodes are
searched for, ...

... the costume according to the net
type is selected, and the knots are
asked to change to it.

The pen is asked to draw a line be-
tween the nodes.

Finally, the new link is entered in the
link list and the related nodes are col-
ored in the same way.

With Scalefree Networks it is a bit eas-
ier, because the costumes are chosen
randomly.

insert a link from

nl# to n2#

set node1 to item nl of nodelist

set node2 | to item (n2 of (nodelist

5

if type of network

costume®# of

> i

costume# of ‘model > [f]

set costumeno (o' costume# of (nodel

b

tell node2 to switch to costume

costume#

costume #

of (model < [}

of (nodel < Fj]

with inputs costume no

| if costume round

set costume no
else
set costume no

F

tell nodel to switch to costume

ot

tell node2 to switch to costume

to pick random &F3P to &P

to pick random &3 to &P

with inputs costume no

with inputs costume no

of Pen

insert list n1 n2 in linklist

color nodes connected to nl

o switch to costume
pick random &F3) to &P
t0o switch to costume

pick random &F) to &P

0 switch to costume

pick random &3 to &P

tell node2 to

switch to costume

with inputs pick random &3 to gD

of Pen

insert list n1 n2 in linklist

16 Projects 175

The most complex part is the coloring of the connected subnets. We work with two lists,
from which the connected nodes get all nodes that can be reached from the starting
node. The nodes to be colored contain the nodes that have to be colored — sic.

color nodes connected to ' node no #
script variables
connected nodes | nodes to be colored | costume no (i link
set nodestobecolored to list

We start with the given node number as ||fas ki b S Rl

the beginning and remember its costume. set cosumeno |to costume# of item (node no of (nodelist

As long as there are still nodes in the list, |+ CRECEIE 8

we examine the link list to see if the first set i [tof]
node number of the connected nodes ap- || repeat until
pears in the link either to the left or right. et ink [to! item (G of (lnkiist

If so, the other node is also connected to B ——
. L (item @ of (link |5 item @K of (connected nodes |5 and
the source node and is added to the list if —

L . . if "Vindex of (1 (2 nk | in (nodes to be colored |
it is not already in the list. < e

nodes to be colored)

add | mi to (connected nodes

else
{item @ of (link | item @I of (connected nodes) and
¢ index of (L1 K> i link) in (nodes to be colored |3}

) KD Ui link | to (connected nodes

If the first node in the list is not yet con-
tained in the list nodes to be colored, it i (ui| connected nodes |) in | nodes to be colored
is entered there and removed from the list item of to (modes to be colored

of connected nodes.

Finally, the costumes of all nodes to be [e e
colored are set to the same value as the

Lo = i ui nodes to be colored of nodelist [{)
costume number of the initial node.

The controls, the two (and further) net types, the creation, joining and coloring of nodes
as well as the diagram creation are based on the sub-lists and can be developed largely
independently of each other. The topic is therefore well suited for teaching in different
working groups.

16.4 Evolution 176

16.4 Evolution

Contents:

e simple event control with buttons
e easy access to objects

e simple use of lists

The aim of this small project is to

produce a presentable result new experiment

with the simplest possible
methods, which can be used in
class if required. The methods,
e.g. for the representation of the
animals, are partly found by
"trial and error", which of course
challenges improvements. That's
the way it's supposed to be. The
starting points of the parts are father

somewhat highlighted in the

pictures. }:ﬁ ﬁ ﬁ

childl child2 child3

| generafion [‘. LN

mother

child4

| crossing child1 with child2 | | crossing child1 with child4 | | crossing child2 with childs |

| crossing chitd 1 with chil3 | | crossing child2 with child3 | | crossing child3 with childs |

In the project, "animals" are randomly created, each consisting of 9 rectangles of random
size, which are rotated to create a kind of horse. With a different composition, other "ani-
mals" can be quickly produced. The partial rectangles are always drawn in the same order
and orientation, so that you have to try out where to start drawing. Of course, this problem
can be solved more elegantly with some mathematics, and if parameters can be used to
influence how a rectangle is drawn, then it can be done more beautifully - in a different
way. But it can also be done quite simply.

After the production of two animals, four offspring are created and shown slightly smaller
below. From these you can choose two and appoint them as new parents. If you repeat
this, you can "breed out" certain characteristics, e.g. small heads or short legs. At each
crossing, the characteristics are changed at random. If a part becomes too small, it falls
away. So you can breed something like seals or ostriches out of the initial horses.

It makes sense to create new parts by mutations or to change the starting point of the
parts, i.e. to let them "migrate". To do this, the data structures must be changed, for ex-
ample by recording the coordinates of the approach points and adjusting the methods ac-
cordingly.

16 Projects

177

New animals can be created from the object Ani-
mal, which has a local method for this. In it, the
parts of the animal are generated as lists of
"reasonably usable" random numbers. They are
then combined to form the complete list.

The parts of the animals are always drawn with the
same method show part. The pen moves to the hor-
izontal position and rotates to the angle passed as
the third element in the list, then draws a rectangle
with the lengths passed as the first and second ele-
ment. In addition, the starting point is emphasized
somewhat.

The method show animal first changes the size of
the animal as indicated. Then the parts are drawn at
the "tried out" points. Only the first part of it is
shown.

~

9 show animal (animal : at ‘x# y #

script variables ' ear head | neck ' body | display
set display | to °change size of animal to n
to item P of (display

to item @ of (display

set ear
;et head
set neck to item K of (display
set body |to item K of (display
gotox:(X y:(y

@ show part body

point in direction K

turn b item R of (neck degrees
turn c &€ degrees

move | item @ of (neck steps

turn b &P degrees

turn (3 &) degrees
move | item @ of (neck steps
point in direction
turn § (item € of (head
turn d &) degrees

move | item @ of (head

degrees

steps
¢ show part ' head

turn b €D degrees
move item @) of (head steps
point in direction K

turn & (item €D of (ear. degrees

turn d €D degrees
move item @) of (ear steps
9 show part ' ear

d show animal ' display (2) at x

9\ show animal ' display (3)at x

9 new animal

script variables
head
hindLegDown | tail

pick random @) to €IP (pick random EP to &P

~

set head

set ear

set neck

set body

set frontLegUp

pick random [P to &P

list

list

set hindLegUp

pick random [P to &P

list

list

ear

to list

to list

to list

to list

to

neck ' body

frontLegUp

pick random to @3

frontLegDown

hindLegUp

pick random [} to € | pick random [P to &P

pick random &) to LD

pick random @&J to g (pick random [P to &P

pick random §F5)P to LD

pick random &P to 1P
pick random [P to LD

pick random J) to &P

set frontLegDown

pick random [P to

to

pick random) to &P

to

pick random () to &P

set hindLegDown | to

pick random [P to §EP

pick random @{} to &P

set tail

report

list

to list

head

pick random &[P to P
pick random @) to I

neck (body (frontlLegUp (frontLegDown

hindLegDown | tail

set pen size to @

set pen color to

point in direction >

turn & (item €K of (part

degrees

move | item K of (part
turn & P degrees
move | item @& of (part
turn & P degrees
move | item &K of (part
turn & P degrees
move | item @& of (part
turn 4 P degrees
move | item @& of (part

move)P steps

set pen size to &P

set pen color to

move P steps

pick random @ZJ to g

pick random @ to &P

pick random &3P to &P

pick random @& to P

pick random @ to &P

pick random gEP to &P

hindLegUp

16.4 Evolution 178

Two animals are ‘"crossed" by randomly

Q crossing of (animall : with (animal2 : mutation rate 'mr #

assembling the parts of one or the other -

animal into a new one. During each of these .= > -
script variables | part i result

processes the dimensions are changed e I

randomly - depending on the mutation rate [ige o
mr.

Select from which animal a part
will be taken. set parl [to item (i of (@animall

Change the width of the part at

random.
replace item @) of (part with
item @I of (part. |+ (1]
if item K of (part <H
Too small parts fall away. replace item @I of (part. with [J

re_place item @) of (part with [J]

also, for the height
replace item @9 of (part with

item @ of (part pick random -7 to 7 |

réplace item) of (part with (]
replace item @) of (part with (]

item € of (part + \;'-)E;B random

Add part to new animal. add (part to (result
change i | by &P

Return result.

A new experiment is started by asking the Animal
object to create two new animals as father and

.

new experiment

mother. They'll be crossed. set father |to[ask Animal |for Q new animal, of Animal

set mother |to|ask Animal |for (@ new animal of Animal

(frossing of father with mother

set generation | to [i

This is done accordingly with the children. -
when I am clicked

crossing of child1 with ' child2

g0 to x: @D v: CLED
change generation | by &)

16 Projects

179

Let us try to breed "jumping ponies" with short tails. First we create the parents and select

candidates for ponies from the offspring.

neues Expenmem { Ge"em‘j“" neues Expenmem (Generation m
Vater Mutter Vater Mutter
Kindl Kind2 Kind3 Kind4 Kind1 Kind2 Kind3 Kinda
neues Expenmem [el ation [ETN) neues Enpgnmgnt (VGersenmon
Vater Mutter Vater Mutter
Kindl Kind2 Kind3 Kind4 Kindl Kind2 Kind3 Kind4

Well - evolution is just unfathomable!

16.5 Using the Sensor Board Calliope

180

16.5 Using the Sensor Board Calliope

Contents:

e access to external hardware

e physical computing

e access to current topics (“smart watch”)

@ Sensordaten an Snap

We use one of the standard sensor
boards, in this case the Calliope
mini. For this, there is a program by

Calliope gefunden!

Beschleunigung X: -176
Beschleunigung Z: 963

Andreas Flemming®®, which contin-

Button B: 0
Temperatur: 29

uously sends the measured values
of the board via an internal server
and thus also makes them accessi-

ble to browser applications via the http protocol. If we start the program, the Calli-
ope board is found after a short search and the measured values are displayed.

In Snap erfrage localhost:2235

Beschleunigung Y: -132
Button A: 0
Helligkeit: 180

The measured values are in the sequence acceleration in x-, -y and z-direction, state of
buttons A and B as well as brightness and temperature, each in free units. We can easily
split this string. Afterwards the individual values are accessible as contents of a list.

set x | to 0

f;etpmsizetoo

f:etmeasuedvaiues to

| split GET | url: [[UNIEFICHPYEL send: || headers: by BE3

set y to\vitemmoi measured values / g[P

Qotox: X y:-'y

repeat D

| change x | by @B

set measured values | to
|split GET | wrk send:] headers: by I3

[to item @K of (measured values / &[P

In a small script, based on an
Eickhoff-
Schachtebeck 4, we try to

idea by Annika

convert the acceleration sen-
sor in the x-direction into a
step counter, as it is used in
smart watches. We therefore
attach the sensor board to
the arm or leg and display the
measured values graphically.
(However, we should have a
long enough cable between
board and computer!)

46 https://www.uni-goettingen.de/de/software+zur+verwendung+des+calli-
ope+mini+mit+scratch+1.4%2c+byob+und+snap%21+%28andreas+flemming%29+down-

load/569672.html

47in https://www.uni-goettingen.de/de/unterrichtsbeispiel+fithessarmband+%28dr.+an-

nika+eickhoff-schachtebeck%29+download/565581.html

The Calliope board

as a pedometer.

16 Projects 181

The result is graphically available here, but can of course also be stored and evaluated as
a series of measured values.

As an example, we enter the x-acceleration add

and the corresponding time of the measure- (item @ of (measured values | current timeinmiliseconds — &0

ment to a list. to (x-acceleration

These data must be smoothed for an evaluation, e.g. using an averaging of adjacent values,
and then the maxima of the measurement series can be determined for a step count. Both
are nice detail tasks. If we assume an average step size of 1m, then we can also determine

the speed - and display the results. These can

then be easily compared with those of |rskewa® CILCiSil o data smoothing £ oo Ll il

commercially available devices. They're often [You-did: MG 1 v I IR =T TSl steps-with-a-speed-of-

no better. md nd (&L =1 item @ of (result /(10)

|

You did 6 steps
with a speed of 2.5
kmi/h.

> 1

16.6 Rate Websites: PageRank 182

16.6 Rate Websites: PageRank*®

Contents:

e search engines

e OOP techniques

e current political issues

If you know the addresses of websites, you can reach them directly via the net. But what
happens when we search for pages with specific content? For this purpose, of course we
use the search engines, which propose us to certain keywords network addresses from
their tables of contents. These directories can be created by web crawlers automatically
visiting as many accessible websites as possible, jumping from link to link, and adding the
keywords found there to the table of contents of the search engine. This usually results in
extremely extensive address collections for the same keyword.

Since users of search engines cannot handle large unordered address collections, the pages
found for a keyword must be sorted according to their importance. Users then usually use
relatively few addresses that appear first. The links below are hardly noticed. So at least
the commercially operating providers on the net must be interested in appearing as high
up as possible in the lists created by search engines in order to be found by potential cus-
tomers at all. They use all tricks to achieve this.

So far, nothing has been said about the meaning of a page's information for the keyword.
Just showing up doesn't mean much. For example, if a page contains the text "Nothing is
written here about Géttingen", it will still be included in the table of contents relating to
the keyword "Géttingen". So, we need other evaluation criteria. In the simplest case, the
authors of a web page enter keywords in the meta tags for the content of the page:

<meta name = "keywords" content = "Snap!, school, computer science">

However, this possibility is often abused by using frequently used keywords - which do not
affect the page content at all - to direct potential "victims" to the site. Not very helpful is
the idea to count how often the keyword appears on the page. In this case, web pages
sometimes contain certain keywords "invisible", e.g. by writing the keyword very often in
white on a white background. Of course, you can also have people rate websites and enter
them in the search directories. But this is a very expensive and relatively slow way to create
directories, and of course such an evaluation is subjective. It is also often difficult to eval-
uate pages with special content - e.g. from archaeology. In the worst case, the "value" of a
page does not result from its content, but from the amount paid for the evaluation.

Another way to use the expertise of web authors for the evaluation of web pages on the
one hand and to automate the evaluation process on the other hand is realized in the so-
called PageRank procedure. Unlike the meta tags that evaluate your own website, links
from one website to other websites are seen as a knowledge-based vote by which authors
indicate that other websites contain interesting content. If someone refers to a page with
physical content, the author will most likely understand something about the content.

8 from: E. Modrow: Technische Informatik mit Delphi, emu-online, 2004

16 Projects 183

Moreover, since it is usually not known which other websites refer to their own, web au-
thors can only manipulate this procedure with difficulty.

The PageRank method does not evaluate all links equally. It determines a rank (the Page-
Rank) for each known website, which describes the "weight" of this page. This rank is di-
vided during the "vote" by links to all references leading away from the page. If a web page
contains only one outbound link, then this receives the entire weight of the page, if it con-
tains two, the weight is halved, and so on. (If the page does not contain an outgoing link,
it will not take part in the vote. In the PageRank calculation, it returns the value 0.) The
rank of a website increases if as many high ranked pages as possible refer to it and if these
pages contain as few links as possible.

As a first example, let's choose two pages that mutually refer to each other.

To calculate the PageRank of page A - PR(A) - we need the PageRank page

A 4

PR(B) of page B, because a link from B leads to page A. The calculation of
PR(B), however, again includes PR(A). So, we need an old value of PR(A)
to determine the new one. Since this argumentation can be continued, a method must be

developed to reduce the influence of the old values on the calculation of the new rank, so
that a stable result is obtained in the course of the calculations. This is achieved by multi-
plying the contribution of the incoming links by a factor d which is less than 1. Since this is
included in every calculation, the "very old" PageRanks are multiplied by d”, a number that
is increasingly approaching zero. For example, you select the value 0.85 for d. If we desig-
nate the times at which the PageRank was calculated in the past as t1, t2, f3, ..., whereby
a larger index should mean an earlier time, then for both our web pages we get:

PR (A)=..4+085 PR (B)=..+085(..4+085 PR (4)=...+085..+085 - PR () =...

If page B had more than one outbound link, we would have to divide its rank in the calcu-
lation by the number of links - C(B). We must proceed accordingly with the other sites that
have links to page A. If we call these n web pages T+, To, ..., Tnand replace the three dots
in the above relationship with (7-d), then we get the original formula that was initially
given by Google for the page rank calculation:

PRT) , PRT) PR,

PR(A)=(1—d)+d~(C(T) TR

), d =085

The rank of a website is at least 0.75. But what influence do the other terms have? We
want to clarify the question with a simulation program in which symbolic web pages can
be created and linked. The PageRanks can be calculated in a "website" created in this way.

page

16.6 Rate Websites: PageRank 184

| set links I | new page | | calculate calculate page rank rank I
= ﬁ

In our program, in addition to the buttons shown, which serve to control the functionality,
we need the prototype of a "Page", which (here) should be a website, as well as a global
list of all generated pages. Each page contains a link list with the numbers of the linked
pages, a number, a PageRank PR and a help variable PRnew, in which the newly calcu-
lated PageRank is added up.
Pages can be displayed on the screen. =
Since text and numerical values as well as 9 show
some lines are to be drawn here, we use s\cript variables | costume
the already developed graphics library. switch to costume Unitied

;et costume | to copy of current costume

set size of (costume to 30 X 20]

fill rect between &P &P and &P €D color & G €D on (costume

draw rect between &P &P and €D €D color LD €D P on (costume

width &P

draw line from & €D to €D €D color €D €D P on (costume width
2]

draw text (join number on (costume at &P hight &)
color € € €
draw text on (costume at @@ &P hight EEP color P P O

draw text (join (PR on (costume at &) P hight &FP color P €D
o

switch to costume (costume

16.6 Rate Websites: PageRank 185

The most important task of the prototype]
is to create clones of itself. We save sucha | foi o & L s i
clone in a script variable result and ask it [i

to perform the operations that produce

resut to(a new clone of mysell

the desired result through a sequence of
commands. The generated page is added set [to [l | withinputs [T nr

to the page list. set to § | with inputs 3 (X5
result to set to] | with inputs [IYH} list
result to |Q show of Page

result ' fo| gotox: @ v: @
with inputs pick random @[to EP | pick random I[P to LD

tell result to' show

add (result to (page list

In the corresponding mode, pages are con-

nected by clicking on two pages in succes- |t

sion. The numbers of the affected pages if first page = g
are stored in two global variables. Then || == FEire
the first one can be asked to "link" to the -

second one. The Pen draws a line be- |l besdedlals

tween the sides that decreases in thick- | tell Péns to 9 draw a line from > to > of Pen
ness, a kind of arrow. (Mutually connected | with inputs eI T 8 n AR mr s

sides thus maintain a connection almost item Grmsdingac) of Gaaaciicl

the same thickness.) The second page isin- | tell &0 o n Zn g Zi s =) to

serted into the link list of the first page. Q add link @ to link list of item first page of (page list

with inputs (50T NETTE

set firstpage |to [

set secondpage |to [J

When recalculating the PageRanks, each page must
distribute its current value to all connected pages. The page ° gbtriteie; 085
calculates this value and asks all pages of the link list to [Sellis el S T

increase their auxiliary value PRnew accordingly. if . length of (link list | > []
set value [to! PR / length of (link list

for each (item of (link list

o —

tell item (item of page list fo | change

with inputs U (XIP x value

16.6 Rate Websites: PageRank

186

You can use these auxiliary methods to

calculate all PRs

calculate the pageranks. First of all, all =
auxiliary variables of the involved Eiiiia i
pages are set to zero. Then all pages b 2l
distribute their values to the connected = 1
other pages. When this is done, the
auxiliary variables are copied into the
PR variables and the pages are redrawn
with the new values. st i_jtof]
repeat until © i

seti tof

repeat until © i

with inputs PR

> length of (page

LCUN jtem (7 of (page list | :':et

list

| 1|» with inputs [PRnew [0.15 4»

v
delete all PRs 7

change i | by D

> length of (page

> length of (page

LE N item (i of (page list 1) :':et

PRnew of item (i

change i | by &P

<

seti |tof

repeat until i

> ' length of (page

list

tell to Q'distribute PRs| of Page | 3

change i | by §B

list

v
calculate new PRs

v
transfer PRs 7

to

of (page list

list

change i | by §B

g
show pages
VZ

We now want to use our simulation program. We create
two websites, link them and calculate the PageRanks.
You can see that the values converge towards 1
(independent of the initial PageRank, by the way). This is
of course no surprise, because this is exactly what we
intended to achieve with the introduction of the
"damping factor" of 0.85.

As next example we choose the structure of a typical
homepage with a tree structure, which starts from an
index page and branches to subdirectories.

| set links l

ot

| new page | | calculate page rank l

I set links | new page calculate page rank
linking. (_page no (TN) |

16 Projects

187

We now assume that there are additional external sites
that link to our homepage.

The PageRank of the homepage increases considerably,
also the weight of the internal pages increases.

Finally, we want to assume that the external pages are
again referenced in a link list of the homepage.

The rank of the homepage continues to rise. One can see
how the importance of the pages is growing in a network
of pages that mutually refer to one another in order to
express their "respect" for one another.

The PageRank procedure is a technical process that can
also be transferred to other, e.g. social systems. How-
ever, it quickly leads to socio-political questions, be-
cause the focus is not on the content of the pages, but
on their structure and functionality.

[set links I new page [_calculate page rank]
[\ linking m | (pageno , | calculate PR m |
page: 2
page rank:
0.93346460) page: 5
bage: 3 page rank:|
0.41430888)
page rank:
0.93346460] -
' page:
"
page: 4 page rank:|
0,81430885|
page rank:
0.93346460]
page: 1
page rank:|
2.765317393
page: 7 page: E pags: 8 page: 10 ‘Dwe: 11 ‘paqe: 12
page rank: page rank: pags rank: page ranik: page rank:| page rank:|
0.15 0.15 0.15] Lt Lot
[set links] new page [calculate page rank]
(linkingm) (page no) (mlnulampﬂ@)
pags: 2
page rank:
1.14131808) pags: §
page: 3 page rank:
0.47337373
page ranki|
1.14131908
ﬁ page: €
pags: & page rank:
0.47337379
page rank:
1.1413190%|
page: 1
page rank:
3.51884082
pages 7 page: & page: & page: 10 ‘naaz: 1l ‘page: 12
peags rank:| [pege rank: page rank: page ranky page rank:| page rank:|
0,21671073] 0.21671073] 0.21671072 0.21671072] 0.21671072 0.21671072

1. If the result of the PageRank calculation is decisive for the "visibility" of the pages*,

why are commercially oriented private companies allowed to decide on this visibility?

2. The intelligence of the system results from the expertise of those who have consciously

set links in very different areas. Isn't the result actually a public good that should be

available to everyone without some profit (and power) from it?

3. If only the PageRank would be decisive, the search results would always have to be

arranged in the same order. Obviously, this is not the case: the results differ depending

on the person who is looking for. They are filtered according to their interests assumed

by the search engine. In extreme cases, you only get the results that you want to see -

or that someone thinks you want to see - or that someone thinks you should see. The

political consequences (keyword: "echo chambers") are currently under discussion.

4 What only appears at the back is practically non-existent on the net.

17.1 Warehouse Management with SQLite 188

17 At the Supermarket®®

In the following, rather extensive
project we will work in different
groups in the same context: a
supermarket. On the one hand,
technical questions are clarified and
“specialist” methods are applied,
and on the other hand, these
guestions are intended to give rise,
for example, to the social effects of
the technology used. The aim is to
show that a system that is only one-
sidedly geared towards the
"automation" of its tasks can get
pretty out of control. The conflicts
of interest that arise between the
supermarket on the one hand,

whose employees want to do their
work efficiently and well, and the customers who want to see their privacy protected,
obviously require legal regulations in order to achieve a balance of interests. When
working on the subproblems it should be experienced that there are very different ways
to solve the problems. Of course, the various solutions also have different consequences -
and vice versa: if certain consequences are undesirable, then one can always try to find
other solutions that avoid these consequences. Technical decisions are almost never
"without alternatives". Presenting them in this way shows quite clearly that a discussion
of their effects should be avoided.

We imagine a supermarket with different departments:

e ascanner cash register (reads barcodes on the products, supplies article numbers
and invoices)

e awarehouse management system with integrated database (receives article num-
bers, supplies prices and, if necessary, orders products from suppliers)

e an "intelligent" scale for fruits (recognizes a fruit with the help of a camera, gen-
erates barcodes)

e anadvertising department (responsible for payback, advertising, special offers, ...)

e a security department (responsible for the payment of parking fees, customers
with house ban, ...)

The implementations of the individual departments run on different computers and are
processed by different groups. They communicate via a database on a server. And we do
not use professional procedures, but only "naive" solutions that challenge improvements.

50 from E. Modrow, The SQLsnap supermarket, Scratch2015 Amsterdam

17 At the Supermarket

189

17.1 Warehouse Management with SQLite

The warehouse management must be accessible. In this case we use a
small http server with "built-in" SQLite database by Andreas Flemming®?,
which we can start with one mouse click. Then a menu window opens in
which we select the desired database - here the database supermarket.

There we find five tables:

e products(pnr,identifier,maxstock,minstock,stock)
e suppliers(snr,supplier,zipcode,city,streetno)

e prices(pnr,snr,price)

o fruits(fnr,fruit,shape,size,colorcode)

e facerecognition(name,noseToEyes,mouthToEyes, mouseToNose)

We created this database e.g. with SQLiteAdmin®? and filled it with data.

For the SQL server, we first import the SQLite blocks library
and the Sprite SQLite server (and thus also the required
variables and access methods) in this order into an empty
project. (We may also need the library "Web services access
(https)" from the file menu, depending on the configuration of
the server. For the sake of beauty, we take a picture of a
warehouse as a costume of a sprite warehouse, send it to the
correct position and make an stamp. Of course, we let the
establish the We
corresponding instructions in the block /nit as a local method

server connection. summarize the

of the warehouse.

switch to costume depot

go to x: €D v:
_r;how

(© Datenbanken an Snap und GP

Keine Datenbank geladen.
Was mochtest Du tun?

{ Die Beispieldatenbank verwenden.

Eine SQLite-Datenbank laden. }
{ Eine neue SQLite-Datenbank anlegen.

© Datenbanken an Snap und GP

Datenbank geladen
In Snap erfrage localhost:2234/SQLKommando

aktuelle Datei: supermarket

letztes SQL-Kommando:

letztes Ergebnis:

SQLite Administator - supermarket
Datenbank Tabelle Index View Trigger Abfrage Daten Hife

GO0k EEHEEE LY & MR D DG
REEERCEE)

{J SUPERMARKET
& Tabellen
facerecognition Fiterfeld:
fruts]

SQLAbfrage Ergebnis Datensatze editieren

K </[> N #= v (@ Tavele: s

| Fiter:

& Felder e Tfruit hope e
£ pr 100 apple red round big
101 apple green round big
8 size 102 tomato round middle
103 orange round big
104 apricat oval middle
105 banana fong big
106 cherry round small
107 cucumber fong big

2 colorcode
0 prices
@8 products
-8 suppliers
& Indizes
& Views
& Trigger
& Abfragen

108 grape green round small
109 grape blue round small
110 aubergine oval big
111 plum oval middle
112 asparagus fong big
113 blackberry round small
114 radish white round middle
115 pear green oval big

© Datenbank verbunden sQlite351 G

| colorcode|
100
010
100
110
110
110
100
010
010
001
001
001
111
000
111
010

|52

Our warehouse is waiting for the requests of the other departments of

the supermarket. We leave the implementation of our own functionalities
such as the automatic replenishment of stocks or the adjustment of prices
to the tasks. However, in order to be able to answer inquiries, the
warehouse establishes the connection to the database when the green

flag is clicked.

to list ()

51 http://www.uni-goettingen.de/de/http-server+mit+sqlite+f%c3%bcr+snap%21+%28down-

load%29+andreas+flemming/582081.html

52 Using a free tool, such as SQLiteAdmin, you can easily create databases and tables and en-

ter data.

17.1 Warehouse Management with SQLite 190

Our SQLite server can only do a few things: connect and compile the results of SQL queries.

9 establish connection to (server = http://localhost:2234/ 9 SQL-query | query

script variables | result | row

set infobox |to list

\

set resull | to list

?- connected

set connection

" S@lTT, Bhttp://localhost:2234/SHOW-DATABASES il ok

<

set connected [t0 < true @

% | url (join (connection query

switch to costume DB-connected

FYi [l connecting-successfull R ORE T (111> 4
else

set connection | to < @ faise

set row |to url (join connection [N
repeat until© ‘row = |Jj
add (fow to (result

switch to costume DB-disconnected set row | to url (join (connection [SJ:NE]

add [FGIER to (infobox
else

add to infobox

For example, we receive all products with

In addition, we give them the option of listing the tables available in the database and
displaying the attributes of a table.

v SHOW COLUMS FROM (table

report ¥ SQL-Anfrage (join SESIESSUIEIZe table

¥ SHOW TABLES

report Y SQL-Anfrage SEONAFGINE

For example, to display all products, we compile a corresponding SQL query:
@ establish connection to

SQLite-Server infobox i)

I oroecing soccession I

set result | to v SQL-query

If you want to change data in the database, use INSERT..INTO...- or
UPDATE...SET...- statements..

-
£l 100,apple red,round,big,100 |8

P4 101,apple green,round,big,010 |5

B 10 omat ouna meaie 10 J
£ 103,0range,round,big, 110 (8

B ot soncotovamadie10 |
s bommmsiona. 10 |
240 chemysouna smanio I
B o7 cucumberionao oo g

9 inserT INTo [@F (£ DALIITIE I INGTS)) VALUES (

[15 pear|['ovar[oig [010 PD)

ruits RS fruit I WHERE ¢

£ 108, grape green,round,small, 01!
[t 109, grape biue,round, small, 001
110,aubergine,oval big,001 | :

Attention: Character strings must be enclosed with apostrophes!
|

113 blackbery,round, small,000 |8

17 At the Supermarket 191

Tasks:

1. If some products have been sold, the inventory has fallen below the minimum value
minstock. Order new products so that the maxstock level is reached again. Find the
supplier with the lowest price for this product.

2. The supermarket wants to become an "organic supermarket". Change suppliers for all
relevant products and adjust prices.

3. Add organic products and their prices to the product table in addition to the cheap
products - if possible.

4. Every Saturday evening an update process is started in the warehouse because the
prices of the suppliers may have changed. In this case the product prices have to be
adjusted.

5. The supermarket works well but needs more money. Increase all prices by 10%.

6. The warehouse management needs statistics on sales per month and year. Collect the
necessary data and display the sales in suitable diagrams.

7. Write a block for delete statements for SQLite.
Syntax: DELETE FROM <tablename> WHERE <condition>;
Example: DELETE FROM suppliers WHERE supplier = ‘Miller’;

17.2 The Scanning Cash Register 192

17.2 The Scanning Cash Register

A Srap! Build Your Own Bl X

C | @ Sicher | https//snap.berkeley.edu/snapsource/snap-html

- {t supermarketwith SQLite

((Scannerkasse productNumber [EEI)
e e
Scannerkasse price [EXCN))
switch to costume .
next costume

W (costume #

=ay for @B secs [hide variable. productiumber |

E- o
think (ST for @B secs
think FET | § determine the price of the barcode.

change ghost | effect by i

ET=sE =) 1234 " 5670

clear graphic effects
change size by @I
et size to @ %

W iz

(g6 o front

90 back @ layers
update > with B

We have already dealt with a barcode reader before and therefore no longer have to deal
with all the details here. For the sake of beauty, we take a picture from a scanner checkout
as the costume of a sprite ScanningCashRegister, send it to the correct position and
make a stamp. We summarize the corresponding instructions in the Init block as a local

method of the cash register, which is called when the green flag is clicked. Additionally, we
import the sprites Barcode and Laser from the old project barcode scanner.

dl We receive barcodes
|9 determine the price of the barcode [H

B e —— from the sprite Bar-
set productNumber | to [TIGONG d f this | isibl
et procuchiamies | code. If this is visible,
set price | to (TR the laser can determine
show variable price | the EAN code. The re-
il Barcode o] show | | | quired variables and
Barcode [£0] [et Barcode D, | methods were im-

ported as local varia-
bles. With their help the
scanner determines the

product code (which
here must be smaller
9 exec SQL command [l | of SaLite-Server | | i than 17) and asks the

(B[FROM [T WHERE {0~ productNumber) server for the price.

17 At the Supermarket 193

Tasks:

1. Draw some new costumes for a printer sprite that can print barcodes on the stage. First,
the user should be asked for the number to be displayed.

2. Search for information about your national barcode system. In Europe you will find EAN
codes. Change the printer sprite to a "national printer sprite" that prints these codes.

3. If the warehouse management does not know the price, an appropriate response
should be made. Change the script to a usable version.

4. If the warehouse management works correctly, the cash register should provide ans-
wers in the form <price>,<name>. Make sure that.

5. Have the cash register produce invoices for the customers, including the date and time
as well as all purchased products with prices and the total amount. Taxes should be
declared as usual in your country.

6. The laser works quite slowly. Increase its speed.
7. Instead of always asking for individual data, the cash register can also get the current
prices of the products in the morning and then work with this copied data. Change the

system accordingly.

8. The warehouse can add new products to its database by reading the EAN codes at the
checkout and entering the remaining data manually. Implement this option.

17.3 The Smart Scale 194

17.3 The Smart Scale

A ‘Snap! Build Your Own B X ' @ Deepl Ubersetzer %

&« C' | & Sicher | https://snap.berkeley.edu/snaps tml |

B ‘& % supermarketwith SQLite
€ control

Sensing
€ Operators

ST

Win frontof B
item @I of B

all but first of {

[add @ 0 & i = =
el 1% wwe ==

[detete @RS of &
| insert 7y ot S of B
e PPN WS -~ RW0T)

Depol SGUteS Scanming laser Barcode SmartSc: Drawnfrn RealFrul LicenceP ParkingG

A sensation is looming in the supermarket: the fruit department has ordered an "intelli-
gent" scale with a camera that is supposed to recognize and weigh fruit at the same time.
Unfortunately, only the camera is included, the fruit recognition has to be implemented by
yourself. The fruit department gets help from the staff of the scanner cash register, be-
cause they have already done similar things.

First, we try to find some criteria to distinguish fruits. We draw an apple, an orange, an
apricot and a banana. The differences are obvious:

e apple and orange are round, the banana is long

e orange, apricot and banana are orange-yellow, the apple is (in this case) green

e the apricot is small, the others are bigger

But what do "round", "long", "yellow" and "green", "big" mean???

We know it, but the computer doesn't. We have to teach him.

We bring the object into the middle of the stage and send the laser from left to
right and from bottom to top over the image. We measure the size of the object
on these routes and calculate the ratio of the results. "Round" objects should
have a ratio close to "1", "long" objects others. For "oval" objects we should
actually use several measuring directions. But for us "oval" means "not round

and not long".

17 At the Supermarket 195

The determine horizontal dimensions - block of the laser
provides a list with two values: left and right border.
Correspondingly, the determine vertical dimensions - block | bida Lot uul

lower and upper limit of the object. With these results we can = kaEs 220
list

9 determine horizontal dimensions

decide whether an object is round, long or oval. And we know its [Bl
size. go to x: v: @D
point in direction K

The color of the object is still) : :
repeat until © not - color is touching Jjjj ?

get width of >»

missing. We import the already
known library and use the RSl Sl 2
blocks to determine the

move (distance steps

repeat until color | is touching JJjj ?

move &P steps

getRGB from » at §P &P

dimensions of a costume and

to determine an RGB value.
add ' x position to (result

9 determine the average color of move [P steps

script variables repeat until color | is touching JJj ?

dy 'x 'y color | costume | width -
move (distance steps

-

costume to| ask fruit for| copy of (&
repeat until © not - color is touching [Jj ?
heighl | to get height of (costume <
move P steps
width ' to get width of (costume

édd x position to (result

dx |to/ round _width o

dy |to| round (height /g

to (height / &P With their help we
repeat &P measure the color
;et color | to getRGB from (costume at(x (y values at 5 points on
éhange R | by item @K of (color the vertical and
'change G | by item @& of (color horizontal centerline
[esance B |y item @B of (colon respectively and
e x -, determine the mean
value from them.

set x to

repeat &3

sét color | to getRGB from (costume at(x (y

’(;hange R | by item @K of (color

'change G | by item @ of (color

-éhange B | by item &R of (color

bchange y

report

list round@-,w]——_ LS / round(w‘,

17.3 The Smart Scale 196

Using these methods, the laser can determine the

characteristic properties of a fruit.

script variables 'dx ‘dy (result (left ' right (up
(jo to front

set h | toQ determine horizontal dimensions

set left | to item @K of (h
set right | to item @& of (h

set h |to(Q determine vertical dimensions

~

set down | to item @) of (h

set up | to item @ of (h

set dx to/ right — left

Normal fruits have different colors. But our RGB values can
display 256 * 256 * 256 colors, so 16,777,218. That's a little
too many. We need a method to reduce the number of

set dy to/ 'wp — downm

§et result | to list

if / :fdy". Ldx) < [X]

add [to (result

colors.

We try this: for each RGB channel we decide whether the

(v &) <
add [JE] to (result

else

at all - or not. e R 100

color value is "high or "low". If it is high, we set it to 255,

otherwise to 0, so we only get two possible values for each
channel, so 2 * 2 * 2 = 8 possible colors. With this
procedure we try out whether we can see anything useful

add BiEl to (result
else

" IR

add L0 to (result

else
add [Jf] to (result

add (9 determine the average color of fruit to (result

limit #

9 determine color code of [color : with limit

script variables | result
if item @B of (color </ limit

set resull | to (join [[

set resull | to ' join [

if item @ of (color </ limit

set resull | to join result [J
else

sét resull | to | join result [J ’ q;il:'
o determine color code of item @R of result with limit)

item € of (color </ limit

set resul_|to (join (result [] It's looking good, isn't it?
else

set resull | to [join result []

So, we can equip the fruit scale with a method that asks the laser to determine the fruit
data.

9 recognize fruit (fruit >>
script variables | result

set resull | to

[ask Laser |for (9 measure | of Laser | |withinputs fruit

17 At the Supermarket 197

And this result is used for a database query on the SQLite server. The color space is re-
duced as discussed and the quotation marks are placed around the data.

C2 AT Tl Messung-lauft

It's working!

)

Aprikose?

After these successes the crew of the fruit scale becomes courageous and tries to analize
real fruit pictures.

A Snap! Build Your Own Bl X

<« @ | @ Sicher | https://snap.berkeley.edu/snapsource/snap.htmi | f

i in front of F
item @S of
all but first of {

length of B

H contains
add [TF to A
delete G of B

T I @ |
e

It reduces the number of colors as described...

17.3 The Smart Scale

198

... and think that's enough. It'll take a while, but they've got time.

Finally, they calculate the average colour of the fruit as indicated
and reduce the result again. If they do that with an orange, they

get a pretty yellow.

(9 determine color code of item @ED of result with limit GEZ

This means that the database can also be searched for "real" fruits

- what more do we want?

[9 reduce color space of [fruit >

script vaﬁébles
Yy R G B [width | height

set costume to[ask RealFruil | for [copy of (5115
set width | to get width of (costume

[

set height | to get height of (costume

set x to J

to item &K of (color
to ' item &) of (color

to item EE) of (color

if (6 <[E]
L;etG to [
else

[setG to A
if B <
[s\etB to]
else

LsetB to &5

3

;EIRGB R G B atix Yy on/ costume
change y |by &9

‘—t:ll Realfuil |0 | switch to costume (Costume

17 At the Supermarket 199

Now you have the full toolbox together for optical fruit determination:

1. Take a picture of a fruit and choose it as the costume of a sprite. You can take pictures
with your smartphone or laptop camera. The background should be white.

Reduce the color space of the image.

Measure size and shape of the fruit.

Measure the mean color of the fruit and reduce it as well.

e W

Calculate the color code of the fruit.

The obtained data shape, size and color code can be used as columns of a database table.
We will have three different values each for size and shape as well as 8 possible color codes.
This allows us to distinguish 3 * 3 * 8 = 72 fruits. Try a "real" intelligent fruit scale in a

department store - we're not that bad.

Tasks:
1. a: Create a database table for fruits of the following type:
pnr fruit shape size color code
123 red apple round big 100
223 cherry round small 100
456 banana long big 110

b: Add the table to your database.

c: Write an evaluation method so that it provides the name and price of the fruit. To
do this, use database commands.

2. The color reduction process is very coarse. Come up with a better way.

3. Our fruit recognition process only works well if the fruit is placed in the center of
the stage and aligned horizontally. If we fit a sprite with a fruit picture as a cos-
tume, we can center and align the Sprite in the middle before we print the cos-
tume. Implement the procedure.

4, If we use a more detailed color code, we can distinguish more fruits. Would that
be progress in any situation?

5. It could be that the background of the fruit is not white. Can you help?
6. You can drastically reduce the duration of color space reduction by using Jens

Monig's pixel library instead of getRGB... Do that. You can use the "light of old
stars" as a template.

17.4 License Plate Recognition 200

17.4 License Plate Recognition

GO—EM-123

The success with the smart scale goes through the department store like a wildfire. It also
reaches the security department. Among other things, it is responsible for the parking gar-
age. To simplify the payment of parking fees, the department installs automatic license
plate recognition. Registered customers with a customer card and automatic billing no
longer have to stop in front of the parking garage barrier - at least that's the hope.

Car license plates contain special character sets that facilitate character recognition by
computers. In Europe they have a black border - and that is good for us. So, let's try to
determine the numbers on the plate. (We leave the other signs to you.) Fortunately, we
have already realized almost all tools for our project. All you have to do is ask the people
at the smart fruit scale!

We are trying to develop an extremely simple method of license plate recognition. The
result is very sensitive to changes in position and size of the license plates. But these
disadvantages can be easily corrected by using a detailed measurement method. Take a
look at the exercises!

OCR (Optical Character Recognition) uses complex methods, often with neural networks,
to recognize characters. Here we are inventing a simpler procedure that is similar to that
of the smart scale. Because all our marks on the license plate are the same width, we can
easily identify them once we have found the boundaries of the license plate. With the in-

telligent scale you can see how this happens. We continue to use their laser.

We can produce license plates quickly with the help of various generators on the Internet.
We save them as costumes of a sprite LicencePlate.

We start by searching the top and bottom of the license plate for lines that do not contain
black pixels. Their positions indicate the upper and lower edge of the relevant characters.
Then we search from left to right for vertical lines with black pixels. When we find the first
one, we also have the beginning of the first character. Then we search for the first vertical
line without black pixels. Their x-position is the end of the first character. We have a "win-
dow" with the first sign in it. The next line with black pixels gives the width of the gap
between the characters.

123456780

17 At the Supermarket

201

Q determine upper edge of plate from ' x0# on

script variables ' color (x 'y blackPixelFound | width | height

set width | to get width of (costume

set heighl | to get height of (costume
set blackPixelFound | to < @ faise
set y |to [[J
repeat until blackPixelFound
N

set color | to getRGB from (costume at(Xx

(vitem &K of (color }

if/ '
<‘ item @ of (color < HY

set blackPixelFound | to ¢

|
change x | by @
by €
ﬂ;poﬂ y - @

true @

change y

9 next vertical line from ' x0 #
costume 3>

with black pixels between
and (down # on

s;:ﬁm variables ' color 'x 'y blackPixelFound

set blackPixelFound | to < @ faise

‘repeat until blackPixelFound |

y

costume 3>

up #

J determine lower edge of plate from (x0# on | costume >

blackPixelFound | width ' height

script variables (color (x [y

to get width of (costume

set height | to get height of (costume

set color | to getRGB from (costume at(Xx

by €
by G
ﬂ:poﬂ y + &

P —
change x

change y

9 next vertical line from ' x0# without black pixels between
up # und costume >>

down # auf

script variables ' color 'x 'y blackPixelFound

set x |to &)
set blackPixelFound | to ¢

true @

repeat until - not blackPixelFound

set blackPixelFound | to < @ false

set color

o getRGB from (costume at(Xx

Now we can move this window over all characters of the license plate and try to recognize

the characters inside the field.

0123456789

00123456789

17.4 License Plate Recognition 202

We can move a red rectangle across all characters by

first determining the character width and the gap ~ =~ == = = == == = =
script variables (xStart (xEnd [code
between the characters.

9 next vertical line from [x0 — &) with black pixels between ' upperEdge
and lowerEdge on | costume
- —— 'to
(9 determine upper edge of plate from € on costume = || e —
1o e o o Eipon —)) next vertical line from (' xStart + @J without black pixels between
to (9 determine lower edge of plate from €3 on ' costume (upperEdge undlowerEdge auf [costume

— &rawrectbetween-‘)stzrl (upperEdge and (xEnd (lowerEdge color €3
A - - - (paal
|f|ﬁdvuﬁgl::fmm@wlhbhdpudsbetwem upperEdge and &5 @ on : width @

set code | to(V recognize the sign from ‘xStart on’

"’nmvmmnefmmr’?mn + @ without black pixels between = :
to| switch to costume

‘upperEdge und lowerEdge auf costume ; LicensePlate ‘ |

D —— —
set charWidth |to(xEnd — xStart

lm

|

'(join (number (9 look for the next sign from xPos on/ costume

The number recognition itself is still
missing. As a starting point we take

the characters with the rectangle

around.
P1
We imagine a "sensor field" consisting of three crossing lines. We measure the colors at
the round points. We number the points as shown and look at the results in tabular form. P2 P3 pa
(gray fields: result difficult to predict) ps b7
P6
Code(s)
00100100 P8

01111110
01101010
01011100
01111100
11010001
00001100
0100100
01111010
00010100
01010100
00101100
00101110

Errors may occur with characters 3, 8 and 9 if the points are not very well adjusted. But

that doesn't matter, because if we move the sensors P2, P3 and P7 a little bit so that they
provide clear values, we can even do without the sensors P71, P2 and P8 (e.g.) and still
have a usable code.

17 At the Supermarket 203

Code Wert
10010 18
11111 31
10101 21
11110 30
01000 8
00110 22
00010 10
11101 29
01010 10
10111 23

A possible layout for the remaining sensors would be:

012345

We choose a license plate with all ten characters. The sensors are placed in suitable places

(here: (14]24), ...) and stored in a list to read the colors in the character window at the
positions and to form a code number from the colors interpreted as a dual code. When
we're done, we transform the code into the right character.

[coie (code #) | = ciphes

9 recognize the sign from [xt

script variables (x (y
<et ponts |to

list

| list [14 24 4 » R Hist 3528« p R Hist [5 [43 4 » RISt [13 {45 ¢ » F ISt 35 145 ¢

set code
- -

77 points

set y |to| upperEdge + item @ of (.01 |1l points

set color to getRGB from (costume at(x (y
fill circle (X (¥ radius @) on (costume color P €&

U item @D of (color > [[]

set duaicode |to (dualcode / @
change i | by B
report 9 code code —> cipher

17.4 License Plate Recognition 204

Now the security department can ask the laser from their office in the car park which car
has just arrived:

(ParkingGarage number [[#=2007 GO0

The result is particularly impressive for the advertising department, which immediately
sees completely new applications for the process. Everyone's very proud of the security!

Tasks

1. Inthe examples, the sensor positions are given absolutely in pixels. Address the sen-
sors relative to the size of the character rectangle.

2. Character recognition in the examples is very simple, but very sensitive to changes in
the size and position of the license plate. Use more sensors to detect the characters
more reliably.

3. Extend character recognition to the entire character set for vehicle license plates.

4. Character recognition programs can learn. If the script does not find any recognizable
patterns, it should display its result and ask for the correct character. Save the pat-
terns and the corresponding characters in a database table. Use queries to identify
unknown patterns.

5. If you want to read dirty license plates, you won't find any sharp character bounda-
ries. As a result, some sensors will produce errors. Improve the results in such cases
by determining the "next correct code" of an incorrect code.

17

At the Supermarket 205

10.

11.

12.

The recognition of dirty plates can be improved by converting the color ™

g_‘ < e
image to a pure black-and-white image and closing the gaps caused by . _rﬂ ') 3
the dirt. Find out about suitable procedures for this purpose and -Lﬁ-

implement one of them.

156780 |

The security department needs a database of license plates and vehicle owners and
their status (customer, company member, unwanted person, external parker, etc.).
Can you help?

The license plate recognition turns out to be a great success for the security depart-
ment. All its members are very proud of it and the other members of the company
admire the "sheriffs". The advertising department now wants to use the data from
the license plate table to honor customers as VIP customers who are frequently and
for a long time present in the supermarket. These have special parking spaces near
the elevator. Write a query to find VIP customers.

After some time, the VIP parking lots are occupied by pensioners and unemployed.
Therefore, the advertising department extends the criteria for VIP customers by a
minimum of turnover with their purchases. Because almost all customers use credit
cards for payment, this is no problem. Improve VIP customer query accordingly.

The advertising department finds that it would be helpful to know not only a custom-
er's turnover but also what they have bought. If it knows the interests of customers,
it can provide them with special offers and special prices. Determine the additional
tables required for this and their columns in the database. Write suitable queries.

The advertising department wants to know whether its advertising activities are suc-
cessful. Do they reach customers? Try to answer these questions based on the stored
data.

On German motorways, the truck tolls are determined using toll collect barkers that
read the license plates of the passing vehicles. They read ALL plates and then delete
those of the cars. Is this approach appropriate? Discuss the consequences if all vehicle
numbers and their positions would be stored.

17.5 The Advertising Department 206

17.5 The Advertising Department

Paul Peter Mary Hannah

The advertising department is excited about the possibilities of character recognition and
wants to expand this area: they want to know who is in the supermarket. The aim is to
identify customers with a face recognition program. We have already familiarized
ourselves with the procedures for this, which is why we now only deal with possible
consequences - in the form of tasks. These can be of more technical nature, but can also
quickly lead into the field of computer science and society. The transition to this is a bit
abrupt, of course, but in the media you can quickly find examples against which ours are
still harmless.

Tasks

"Technical" tasks can be derived quickly and with different demands from the previous
project:

1. The four images used so far are very simple. Experiment with real images. Prepare
them so that the scripts can be applied to them.

2. Look for additional parameters to distinguish faces.

But of course, we can also become "bitchy", and use the data obtained in a different way.

3. Toidentify the people on the pictures, a photo of the customers should be taken au-
tomatically every time they use their credit or customer card at the checkout. Discuss
this idea.

4. The security department should keep "unwanted persons", i.e. shoplifters, tramps, ...
away from the supermarket. If the facial recognition identifies persons whose data
must of course be stored in a database, it triggers an alarm. Sometimes the process
produces a lot of trouble, therefore the security department wants to keep the group
of people a little more subtly away: the garage barrier does not open for them, the
elevator is on strike, doors remain closed, ... Discuss this situation.

17 At the Supermarket 207

5. The advertising department has nice ideas too. There are many people in the super-
market who buy little or nothing. Others only buy special offers or cheap products.
These are also declared "unwanted persons" because they take up space that should
be better reserved for VIP customers. Discuss this situation.

And it can be really dangerous.

6. Unwanted people have to be noticed before they can be harassed. That's why the
security and advertising departments put together profiles to identify them before
they enter the supermarket for the first time. Develop such profiles and discuss the
consequences.

7. The advertising department knows from the cash register what customers are buying.
However, many customers are clearly interested in products without buying them.
Therefore, the customers' path through the supermarket should be followed. This can
be done with "number plates" on the shopping trolley, RFID chips on these, with the
help of face recognition or their smartphone will be located. If they remain standing
somewhere for a particularly long time, this can signal an unfulfilled desire to buy.
Now the advertising department knows which products a customer is interested in.
Personalized advertising for the corresponding products can be sent to customers on
their smartphones, or the data of these customers can be sold to stores that specialize
in these products. Discuss this situation.

8. The supermarket wants to focus on VIP customers. These in turn are identified via
corresponding profiles (car brand, residential area, personal criteria derived from face
recognition, shopping behavior, etc.). To avoid trouble, non-VIP customers should
continue to be allowed into the supermarket, but they are subject to minor chicanes
(see above). Discuss this situation.

9. Face recognition is always possible when a camera is available, i.e. in smartphones,
"smart glasses", laptops, surveillance cameras, cars, ... Because the Internet is also
available almost everywhere, the images can be compared with those in accessible
social networks, databases, ...; accessible to the photographer or accessible to others
who come to the images and are interested. Therefore, anyone who comes into the
field of vision of a camera can be identified in the foreseeable future. Discuss this
situation from different perspectives.

About the Notation of Snap/-Programs 208

About the Notation of Snap!-Programs

There are repeated objections that Snap! programs on paper would be difficult to write
down and exams would therefore be difficult to design, because it would probably not be
possible to demand that the students work with crayons. Alternatively, sophisticated syn-
tax suggestions in this area can be found on the Internet. Even if | don't see the sense of
using syntax again for a largely syntax-free language in this way, and | think the algorithms
should be written down in appropriate forms (Nassi-Shneiderman-diagrams, UML,...), here
follows proposals on this subject.

It must therefore be shown that graphically formulated algorithms in Snap! can be rec-
orded on paper. For this purpose, method heads and algorithmic basic structures must be
representable. As with other systems, nesting also results from indentations and graphic
aids.

Element Snap!-block handwritten textual

method head

method nams

method name p1 p2

function head

result:

function name p1: result

event handling

(example)

when | receive: any message

FOR loop repeat &1 I repeat{10) reapeat 10-times

head controlled : 1 et repeat until ...
loop

variable variablea b c
declaration "’ar'ﬂb'e@

one-way . if ...
. i J :
alternative -
S

About the Notation of Snap!-Programs 209

two-way
alternative
else ...

evaluation of a

run

call ...

script

evaluation of a
function

b

method call of run ,move n steps” of sprite(2)

tell Spiite2) |to| move @ steps | |with inputs FIJ

run "move n steps” of sprite(2)
with parameter "20"

another object with parameter “20”

Example: Sorting a list in Snap!, formally with indentations and "by hand".

sort thelist

variableinh

setitol

repeat until i > length of theList — 1
setntoi+l

repeat until n > length of thelist

if it f (theList > it i of (theList
= T e ° if nth element of thelist > ith element of theList

;et h [to item m of (theList .
' set h to nth element of thelList
[roviace iem @ of GEEED with @ replace nth elem. of thelList with ith elem. of theList

replace ith element of thelList with h

changenby 1

changeiby1

variableinh

setitol

repeat until i > length of theLb

setntoi+l

repeat until n > length of thelList

if nth element of thelList > ith element of theLis>

et h to nth element of thelist™
replace nth elem. of theList with ith elem. of@

replace ith element of thelist with h

changeibyl

How To ... 210
How To ...

Topic Chapter

... change the size of the screen areas? 2.6

... resize the stage?
... change costumes?
.. “nail” sprites on stage?

... use loops?

... use alternatives?

... start an animation?

... stop the execution of a script?

.. use character codes?

... display texts using sprites?

... convert characters to uppercase?

.. use local variables?

... declare script variables?

... display a variable in a monitor?

... display script variables in a monitor?

... change variable values with a slider?

.. use parallel processes?

.. use lists?

.. use higher list functions (MAP...OVER...)?

.. plot a diagram?

... output text on stage?

... write your own methods?

... differentiate between global and local methods?
... assign a type to a parameter?

... create a drop-down list for a parameter?

... find just invisible blocks?

... send messages?

... access other sprites?

... call methods of another object?

... access attributes of other sprites?

... send a message to specific objects?

2.6,8.2,11.1,14.4,15.4
2.7.4,7.4.2,9.3,15.3,16.3
3.3,16.3,16.4

2.7.2,..

274, ..
2.74,31,3.2,4, ..

3.1

3.3,12.2,15.2,16.1
3.1,5,6.3
12.2,15.2,16.1
2.7.2,31,..,91,..
271,273, ..
3.1,33,..

5.

11.

32,74

2.7.2,2.74,6., ..
8.3,8.6,10.3,11.2, 16.2
2.75,4.6,13.4,16.3
2.75,3.3

271, ..

271, ..
2.7.1,3.2,..,121, ..
125

2.7.1

2.7.2,31,..,163, ..
27.2,7.,71,..
273,274,32,..,7, ..
4.2,45,46,7.,7.1, ..

3.1

How To ... 211

.. respond to messages? 3.1, ..

... clone objects? 2.7.3,3.2,7.,7.2,73,7.4, ..
... cCopy objects? 3.1,7.1, ..

... find neighboring objects? 274

.. request user input? 3.3, ..

... export a project? 4.1

... export global blocks? 4.1,12.1

... export a sprite? 4.1

... create your own library? 8.2.2,12.1

... copy a script to another sprite? 4.1

.. measure time? 4.2

.. respond to keystrokes? 4.3,9.1

.. run scripts step by step? 5.

.. use recursions? 6.2,8.1,13.2

... display a table permanently? 6.2,6.4,12.4,12.5,15.4
... create new control structures? 6.4,15.3,16.3

.. use code as data? 6.4,7.,9.1,12,,15.3,16.3
.. merge sprites into an aggregation? 7.4.2

... speed up the program flow? 8.1,9.2,9.3,12.1,14.2,15.4
... access RGB values of pixels? 8.2,8.3,8.4,8.6,9.2,9.3,17.3
.. use pentrails? 8.2,8.4

... write JavaScript-functions? 8.2,8.5,9.3,13.2

.. react on colors? 9.1,9.2

.. produce sounds? 10.1, 15.2

.. play sounds? 10.2,15.2

... change sounds? 10.3,10.4

... draw transparently? 8.5,11.2,11.3

.. use an external server? 12.4,12.5,16.5,17.1

.. import a text file? 12.4,16.2

... create and use predicates? 13.2,15.1

.. use a stack? 14.3

.. hide blocks? 153

... draw the costume of a sprite in the program? 16.6

Index 212
Index
<attribute> of - block........ 17, 18, 32, 47,48, 55 Children....ocuvee e, 10
Abelson, Harold.......ccoceeveeiiiicieiieee e 11
acceleration SENSOrcevveevveerieeriieeneennne 180
access control............
address............. clone....... 10, 15, 17, 26, 47ff, 58, 167, 172, 185
adjacency list.......... clone, dynamically generated. .
adjacency matrix............ clone, statically generated.........ccccceeevvenennee.
advertising department................. 6, 188, 204ff cloning...... 9, 26, 36, 47ff, 52ff, 59, 60, 173, 211
aggregationccccceeevveeeciieeennns 53,57,59, 211 cloning, dynamic.......ccccoeeeeeviieeennnnen. 47,52,57
algorithmeeeeeeeeee e, 12, 208 cloning, statiC.....ccovveeveeriieeneenieenieeieene 48,57
algorithm, geneticccocveeeeveveeieceeienieas 123 code.... 12, 25ff, 47ff, 77ff, 110, 145, 202ff, 211
algorithmics.....oooveveeiciiiecieecceee s 4,16,117 code, unevaluated.........cccocecviiiiiieeeciieeee. 18
alternative ...ooveeceeereeenieenieeeee 162, 208, 209 colorchanel......cccooooveieeiiiccccceecee e, 71
alternatives, nested.......cc.ccoeevuennes 140, 142, 158 COIOr COAB..vviiiiiiiiee et 199
analysis of COdeccvvvrveeriieiereeeeree e 35 color cube.....cooocvveeeiieeeiieeee e, 68, 69, 76
ANCNOT .t 59 (1o Lo T o 8 110 (] N 571
AND Lottt 57, 60, 62 color separationcceeeeeeeeceeneenieneeieniene 76
ANIMALION e, 34,210 COlOr SPACE .eveeiieeieeeeee e 197
approach, experimentalcccccccveeeeviercnnene 30 €Ooloration ...c.ceeveeevieenieneeeeeee e 170,171
ASK e 18, 47, 50, 125, 141 command bloCKuuueueeereeeiiiiiiieiieeienene 15
attribute............. 10, 11, 47, 50, 117ff, 190, 210 computer algebra....
AUdio COMP..eiiiiiiiiiecciie e 95 computer science .. 1ff, 27, 117, 145ff, 182, 206
automata theory ... 162 computer voice............. .. 143
automaton......6, 139, 140ff, 149, 151, 155, 158 concept, informatical.... e 12
automaton, cellular conclusion, logical e 34
automaton, finite conflict of interests.......cccccvvceevcvecireceenenn. 188
=340 1 4 PR CONNECHIVILY vvvveiieeciiieeciee e, 6, 169
consequence, politicalcccceeeiiieeeecineennnns 187
Barabasi, Albert-LaszlOccoeeueeveeviieinnnnns 171 consequence, SoCial...cccocvveeecieeiiieeeiineean, 8, 88
barcode generatorccceevveevieeecieenieeeneene 94 context menu 15, 24ff, 78ff, 102, 113, 119ff
barcode scanner.........cccoeevienene 5,77,94,192 CONEIOl OULPUL .ot 35
basic equation of mechanics........c.c.cuc... 31,33 control structure.. 12ff, 44, 109ff, 156, 172, 211
basic structure, Algorithmic 77,82, 208 CONLIOl .uveieiiieiiiecee e 16, 18, 47,78
DEATING .veeeeiiiecieeceeec 34 foleYo o 1<T =Y o] o WS 4,10, 30
Beauty and Joy of Computing.........c.cceeeneee. 11 coordinate system.......cc.ceeueene 21,71, 163, 167
behavior, socialccccveveeevieriecee e 150 COPY MAChINE ..ouviiiiiieieee e 145
DINArY tre€..ccveveieeiieceeeeece e 46 COPY wveenreeeieenireenieenteeneesiseesieesseesseesseesseesnses 48
bioinformaticscccoeeeeiieeciiiecciee e, 111 costume. 18ff, 27, 59ff, 70, 74, 78, 82, 141, 211
black and white image..........cccceeeverernenne. 74,75 CrEatiVItY .oveeeereeeeseeertee e
block cipher......cceceviiciniiiiiiiincice, 123 cryptanalysis.
block... 9, 11ff, 63ff, 80ff, 108ff, 147ff, 210, 211 c-shaped commandccccoecvveeeiieeeennns 45, 147
block, eMPty.....ccceeveivecieeeeceeeeeee e 30 CUNVE, FECUISIVE ..eeuueeenieeniieeieeeieenieesreenveeenees 63
block-editor......couvvveeeeeiiiieiieeeeeeiereeee, 15, 82 cuStomer Card.......ceeeevecuveeeeeeeeeinnneeenn. 200, 206
bottom-up11, 30
button .. 15ff, 27, 78, 80, 85, 106, 172, 176, 184 data source, external.......ccccccoeeevveeeeeeeeennns 117
data StOre ..ccovevvrveeeeee et 48,49
Cable. s data Structure.......eeeeeeveneeeeeeeeeennnes 11,12,176
Caesar-encoding data structure, higher.......cccccoevvevvrcveneeee. 44
calculability.....cccoeieeiniininiiiniis data type, atOMIC....cccereeriirieiereeeeseeeeeae 37
Calculator.. ..o database........cccouveenenn. 12, 117ff, 188ff, 198ff
CAll e e datenbase qUEry......ccceeveeevieeniieeieenieeieen 197
Calliope...ccvericiinieieieccee decidabilityccooeeeeiinieee 145
camel problemccccevviiiniininiine, decoding...ccceevveeieiirieeeeee e 28, 80
[oF: | oF: [of] (o] SRS default positionccoceeveenieineeniiennns 145, 146
CoCUIVE ettt ettt e et delegation.........ccceeeevieeenns 4,10, 12, 48, 53,57
chain rule...eeceeeeeeeeeee e DELETE FROMuviiieiieeeeeeeee e 191
change, temporalccceecveeeiiieiiiiie e 34 derivative.....oooeeveeeee e 129, 131,134
character code......cooceevierieeneeineennen. 109, 210 desert antccocoeeeeciie e, 29
character recognitionc......... 200, 204, 206 diagram 4,21, 31, 76, 100, 150, 154, 210
character............ 9, 15, 25ff, 106ff, 135ff, 200ff AIalog e 37,119

CheCKbOX ..iecvviieciiieciee e 117

Index 213
digital simulator hardware.......
digitization offensive. Harvey, Brian
Dijkstra method...... hat block.......
AIMENSION...ceiiiiiiiieciee e hearing testcccocvveeveviieciiec e
DNA SeqQUENCING ..cuvvveeirieeerieeecieeeeiiee e Helmholtz coil.....cccooviiieiiiieicieeciieccie 101
download directorycccecvvevcvveveercveeseeenne. help PABE ..eecveeeeeee e 36
draggable......occeeeeeeieeeeeeee e Herget, Wilfrid........ccoevveecieeeeee e 141
Aragon CUMVE ...coouveeeeieeeeiee ettt Hertz, Heinrich......covveevieieciiiiee e, 34
draw statement.........ccoceevcieeeiiineennn, hide primitives.......ccccoeevveeeiieeeicieeceiee e, 146
drip PAINtING .ovveeeeeeecee e hide variable......cccceeeieeeeceececeee e 35
drop-down list......cccceveveerreeinnns higher order list operationccceecvvvnennee 165
AUPlICAte. i Hilbert CUrve......ocovvvveeeeeeecieeee e 64, 65

house banccccveieiiiciie e, 188
EAN-8-COdEuvvveciriieiieeciiee e, http blOCK .evveeiiei e, 12
echo chamber........ccoooieeiiicciiccie hUb e, 171
edge detectioncccceeveveciescieeciee e hydrogen bondccceeceeviveiieeceeieeee 169
electron SOUrCecceeeevecvvveeeeeeennnns hyphenationcccceeevvveennen. 6, 139, 141, 155
elementary magnet...

IBAN NnUMbEr....cccvviieiieeeiecceecee e 155

idea, own.............

image recognition...

immunisation...

impact, social......c.ccceeevviiieeiiiec e,
€rTOr MESSAZE .oeveveeereeeeerereenreennes 156, 158, 161 import of table dataccccceevvveciveennnee. 6, 164
error 9, 11, 35, 36, 84, 126, 158, 202, 204 IMPOIt.ccciiieee e 113,164
event CoNtrol......ccevcceeeciiiecciee e 176 infection chain......cccccoeviiiiiic e, 169
event handling........ccovvevvieiiiiiiiiciee e 27 INFECTION oo 14,18
[770] [V 14 (o) o NN 6,176,179 iNfinite 100P evvveeereeeeecee e 11, 25
(<] SN 58, 60, 61, 62 informatics and societycc.cceeveriercieenennn. 77
export blocks.......cocvevviieiiiiiiiiiieees 30, 69, 108 informatics system 8,117,162, 169
export......coee.. 27,32, 33,34,82,108, 114, 211 inheritancecccccevevveeeeeeeeenns 4,10, 48, 53,57
(3o Yo o USSP 31, 82,113 initial state...ccvvveeeeeieirieeeee e 140, 145
expression, 10gicalccvecvevceeveenceeeeeeee, 125 initial valueueeeeeiiieeiieeieeeceeieee, 16,17, 37

input slot OptioNsccceeveevererierieeree e 119
face recognition 5, 88, 94, 189, 206, 207 INSERT..INTO oo, 190
feed-forward-methodccccveeviiviennnnnn. 61 INSErtioNSOrt ...veeiiciiieccieeecree e 46
field, electric.............. instance variable.......coccceeiiveiieiiiiis 31,60
field, magnetic........ INSEANCE .o 9
final state.... internet..11ff, 39, 76, 80, 117, 149, 170ff, 200ff
first-classcoveeue introduction examplecccceeveieeiiiieeeeninenn. 37

fitness function
flag, green 13, 23, 32, 85, 102, 113, 189, 192

FlU e 4,14, 18
for all sprites................. 15, 16, 25, 30, 106, 125
FOR 100D .cuuviiiiiiieciie ettt 4, 44
for this sprite onlyc.ceevvveeeeneen. 15, 16, 78, 125
fOrgetting .oocveeeeeereeee e 56, 126
FrE@ZING...cvvieciie e 35
frequency analysis.......ccccceeuvenne 5,29, 113, 115
function termcoceeuueeees 6,124,125, 129, 134
function..... 34, 38, 50, 60, 70ff, 91, 106ff, 131ff
function, trigonometric........cccccevcvvereercneenns 134
BAlAXY wriiiiiiieeie e
GapMinderoooceiiiiiieeiee e
gate

ghost-effect

gnomsort....

goat problem.

grammar.

graph ...ccceeeee.

grid automatonccceeceieiiiieiiee e, 152
gross national productcccceeeeeeveerineens 150

JavaScript3, 63, 66, 68, 71ff, 88ff, 124, 126, 211

JK-Master-Slave-FlipFIopccoveeevrceeiineinns 62
JOINM ettt 80, 106, 165
KBY eveeteeereesee e 27,109, 110, 123
Keyboard.........ccoueveereieecie e 97
(=] o 11 FR RSSO UPSPUPRRRROOE 21,27
1abyrinth ..o 56
lambda calculusccoeveeeceeniecieieeeeee 12
language, block-oriented........c.ccccceevvernnnne 4,9
language, context-freec.cccoevveeveiveennnen. 135
language, object-orientedccccccvveennnen. 4,9
launch.....ccoeeeeieennnenn. 25,49,57,59, 60, 97, 98

lazy evaluation.
learning process ..
learning Step.

LED e 5,57, 61
length of 28,106, 110
(<] X = 106, 109
Levenshtein distance.......ccccceecvveeriveeeesinennn. 123
library 5,21, 27, 44, 66ff, 82ff, 106ff, 189ff
license plate.......... 6, 74, 94, 155, 200, 201, 204
Lieberman, HENrycccceveeeeveseeeieenenn. 10, 48

Index 214
life expectancy PageRank...... ..6,182, 183, 184, 186, 187
Lindenmayer, Aristid . palindrome....

line graphics
link.. 77,169, 170, 171, 172, 173, 182, 183, 187

LISP ottt 11,12
list........ 15ff, 37ff, 66ff, 75ff, 135ff, 165ff, 175ff
logical Value.....ccoveevevecieeee e 37
108IN SCrPt..vvieiiiieecciee e 113
LOGO for the poor......c.ccceeeevveeennnenn. 6, 156, 162
oYY <3 13,35
loop 18, 25, 37,78, 110, 116, 123, 156, 208
L-SYSTEM oot 6, 135, 138
MAGNET ..vviiieeiiiiiiieee et e e e 4,52
Mail adressccovveeeeeiiiiieieee s 6, 139, 140
make a blockuevveeviviciniiinnnn. 15, 25, 85, 106
make a variableccccoeevvvieeiieeiciieene, 16,78
mMakro.....ccccceeeeunneens oo 27,37, 145
Map-function.......ccoccveeeeeveerieeseenns 74, 76, 109
MatriX....cooeeeeeeeennnn

Mealy-machine.......

media education

MELA tAG evereeeeeriee e 182, 183
methode........... 3ff, 46ff, 106, 125ff, 172ff, 210
methode, globalccccvveennnen. 25, 30, 44, 87
methode, locale .17, 25, 49ff, 85, 177, 189, 192
methode, parallel........cccccoeeveecieeceeieeene 25
methoden callooeveevvevieeeeeiiiiiiineeeen, 18, 52
MiNi [aNgUAGEeevvcvieieeiiecriee et 162
Monig, Jens 3,6,11, 95,163, 165, 199
MONITOT i 27, 35,210
Moore neighborhood.........c.cccccvecvvereernnnnne 155
MOLION . 13,63
MOLIVAtION .oeiiiiiieeee e 30
mouseclick..11, 15, 23,59, 170, 172, 189
MUILIPIEr v 14, 18, 22

music... eeree e e ——— 5,7,8,95,97
mutation. eeeeeee e ———— 123,176

(20172 o1 (ool 16, 18, 47, 59, 60
NAND gate......cccceeeriniiereeeeeiieees 57, 60, 61, 62
Nassi-Shneiderman diagramccccc...... 208
Nnavigation systemccccceeeeiiiiiineeeeesisinns 143
neighbors 18,41, 150, 151, 153, 155
NELTWOIK .evvvieiiieeeeee e 94, 169, 207
network, neural.......cccccoeevvveeeeeeeecinnnnn. 169, 200
NEtworl, SOCIaluuvveeeeiiiciiieeeceeeeeeee e 8
NEUION ...ttt e e eeeeereee e e e e eeerteeeeeeesennanns 54,55
[Lo Yo [40ff, 169, 170ff
NOT 8ate .t 62
number 25, 37ff, 77ff, 126ff, 155, 156, 165, 200
number, smallest........cccovvveeeiiiiiiiireeeeeeeennes 38

operation, recursive ..

(o] L1 | o] SO
opinion-forming, political

OR Bate..cciviiiieeiiciiieee et
output window......... 13, 35, 37,47,59, 78, 113

overwriting methods........ccceccvevvveveercieecneene 53

parameter.....
PATENT c.eeiiieieete ettt
Pareto distribution
parking fee......ccvvvvvvecieeeeeeee e
parking garageccceevveeeeereerveeseenne
PAISEN weeeieerveeieeeieenees
PArsing....cooevvvvveeeenn.

partial problem.......ccccoevvevieerieeseenee.

[T T £
PasSPOrt Photocceeveieeeeiiiecciee e
PASSWOIrd rEQUEST ..cevuveeieeeieeieeeieeiee e
password, complex
path search......cccoevcveseecceecee e
Pavlovian 1earningccceceeeeevveeceesceescneenne
PAYDACK ..,
Peano curve..

physical computing

PhYSICS v

pivot elementccceeveeieeeiciie e
pixel graphics.....cccevvveevviieriiieeiiieeens 5, 66, 68
pixel 66ff, 85ff, 90, 91, 102, 152, 200, 211
o]0] 66, 67, 70, 74, 75, 85
planet image......cccoeeveiiieeiie e 25
planet transit.......cocceeevivieeiiee e 76
plants, artificialc.ccoooveeeiiiiiiiiiiene, 6,135
plausibility checkccccovevcieeveieiieie e 51
play sound until done......c.ccoeevverivereerinnenns 143
PIOT e 96
Poisson distribution........ccccceeceeveeniiiineennee. 170

population data 165, 166
predicate .53ff, 124ff, 134, 139ff, 155, 162, 211
prisoner's dilemma..........
probability of infection....
product code ...

Product rUlE....ccueeeeeeeieeee e

program functionallyc............ 6,124, 125
programming language 9, 11, 156, 161, 162
programming, object-oriented......... 3, 4,10, 47
programming, text-based.........cccccevvernnnne 156
project, work sharing.......c..cceeevveevvenenrinnenns 188
o] 0] (o] olo] ISP 169
prototype.......cceenn. 9ff, 25, 47ff, 167, 173, 184
question, ethical......cccccevvveveenieecieeeee, 150
question, social......cccvevereesceeereerieane 163, 169
QUEUE .evvveeeeeeeiirreeeeeessiiereeeeesnanes 44, 46, 48, 51
QUICKSOIT.ueiiie et 4,39
random network.......cccceeeevveenvvenennn. 6,170,171

random number37,45,177

random valuecccceeeieeeeiiieeniiee e 24
rank of a web page. ... 183,184
reference ...eeeeeeeieeeeeee e 15,17, 48
reference manualcccceeovveeeieeeiieninnnns 15, 47
[T oTo] o AU PPPPRSRTPPP 107
reporter.......cccuueees 15, 49, 50, 84, 106, 118, 120
FESONANCE .eeaeeeeeeens 34
RGB MOdel...ccceiiiiiieieee e, 5, 66

Index 215
RGB..... 5, 66ff, 74, 76, 85, 86, 91, 195, 196, 211 state changeoccvvveevceececeeee e, 142
r0ad SIBN . coiieieiiiiee et 82 state diagram......ccoceeeeeiiiiiniie e 140
FODOT i 4,53, 54 state graph ..coccvveevccieeecciiee e 145, 158
RS-FHPFIOP tviiciiieciiieecieeecee et 62 stop button, redcceeevviiiiiiiiiiieee, 35,52
rule systemcccceevivieeiieee e 135,136 L o]« OSSP 24
FUN cottteee e e e e errae e e e e eeeannans 49, 50, 60, 163 string functionccceevcvecieeceeeee e, 106
StriNg OPEratorcooeveceeeiee i 106
SAMPIE rAte ..vvveeeiiieeiee et e 96 StriNg ProCeSSING...ccccvvvivrieeeeiiiiiiieeeeeeeriiines 124
SAMPIES .evvieeiieeciieecreee e 96, 97, 100 string... 5, 27ff, 37, 77, 106ff, 126ff, 164ff, 180ff
SAY tetteeeraaiinrreeee e e et e e e e e rr e e e e e s e nrnreeeeeeaans 35 SUbSEItULION ..o 116, 135, 136
scale, SMartooooveeeeeiee e 188, 194 SUM FUlC..eeeei i 129
scalefree network.........ccceevvvveeeeeenns 6,171,174 supermarket.....6, 77, 117, 188ff, 205, 206, 207
scanner checkoutcccuuu.... 6,188, 192, 194 Sussman, Gerald und Julie........ccovvveveeeeeennnnes 11
SCANNET c.eeeiiiieeee ettt ee e e esrarreeeesssrraeeeeeesans 162 SWIMMINE ceeiieviiiiiieeee e esireee e
SCHEME ..., 11 SWItCH e,
SCRATCH...... ...3,11,13,143 switching time ...
scriptlevelcieeicieeeciieece, 15, 31, 80, 82 syntax diagram
script variable... 17, 24, 35, 39, 80, 86, 129, 210 SYNEAX cvveeeeireeeinen,
search engineccccecceevveeceese e 182 system time
security department..... 188, 200, 204, 205, 206
SELECT et e e A0 o 164
sensing table VIEW ..ocvveeciieceeceecece e 45
sensor field teaching, creative. .7,8
SENSOr.............. £eAM WOTK e 9
SENSOrboardoooeveeeeeeeiieciieeeee e 6, 180 L] | U 15, 18, 49, 81
seroconversion time..........cccccceevvveeeeeennn, 14,18 testing machineccccoeeevieeiiieeecen, 145, 147
server 12, 113ff, 180, 188ff, 192, 197, 211 text file oovveeeeeeeeiieeeee, 5,,51,113, 164, 211
(=] S 16, 44, 48, 50, 78, 79 TeXt INPUL ..o, 27,28
ShAKErsOrt ...occvveeieeieeee e 46 TEXE OULPUL weveieeeeiecee e 27
show variableccoveeeeiieiiiiiiiie e, 35 TOXE voreeiieireee e 106, 120, 162, 210
side effeCt....ccvicieeiiiiicccecce 125 theatre DiStro......ccccvcveeeiciieciieccee e 29
SIerpinski CUNVeccccvveeiieeeiiiee e 76 thread......coocciieiiec e 25
simulation.......cccceeeeuuveeens 4,14, 30, 34, 146, 151 threshold value........ccccoeeveeeeeeciinnns 54,74, 76
script 9ff, 31ff, 52, 78ff, 131, 147, 152, 206, 211 time announcement, automatic.................. 143
L [Te [=Y SRR 71,102, 103 BIMIB ceeieceeeeeeeeeeeeceeeceeeeeeeeerareeeeeeea 32
small world phenomenoncccccceeeenneenn. 170 tools.... 7, 21, 27, 44, 95, 106, 109ff, 163ff, 189
SMArtWatCh ...cooovveveeeiee e top-down approach.......... 11, 30, 111, 124, 125
SnapMinder.......cccceeueeneen. topic, politicalceecvveveeeceeee e, 182
snowflake......... TOPOIOGY wevieiiiieeiiee et 169
social credits.... TOrUS WOTId .o 153
socket.............. touch sensor... ..53,55
solar system TOUCNING. .eeeieeeeee e 78
sorting by selection .. towers of HanOi....cccvevivevee e 36
sorting method......... transfer procedureccccoveeeieeeiiieeeesiieeenns 29
sortingceeeeeen. transparency .
sound NAMeEd.......ccevveeeeieecieiee e tree StruCtUre ..oovveeeee e 186
Yo YUTaTe I =Tolo] o (=] (PN troubleshooting........ccccceevvveceenieeennn. 4,35, 36
sound.... 5, 8, 13, 95, 96, 97, 100, 141, 143, 211 EPUCK TOI1 e 205
special offer.....cccoveeciieencieccciieecne, 188, 207 tUrbo MOde....ccooeeiieieeieeeeee e, 63,74
SPIN Grid.eeee e 155 Turing machine.......cccccevevveneen. 6, 139, 145, 146
L o) SR 106, 143 turtle graphicscceeevveveeeceeceeeceeee, 63,135
spread of diSeases........cccecvevcvereercieeseeenne 172 L0 g o [N 135, 137, 156, 162
SPreadsheet......cceevccieieciiiecciiec e 164 TYPE CAST uvieiiiieeiie ettt 27
spring pendulumcccceevieeniieeiniiee e, 4,30 TYPING.ciiiiieeiiee e, 15, 25, 106, 147, 210
sprite 10ff, 47ff, 78, 80ff, 103, 113ff, 141ff UIErasoniC SENSONcuevveereeieeeieeeeeeeeeenenens 54, 55
SQL database.......ccoeveeeeiiiiiiiieieeec e 5,117 UML diagramccceeevveeeeniieeniieeeeineenne 57,208
SQL cvveeeiiiees 5,117,118, 120, 122, 189, 190 UNICOAE....uiiieiiiieeciiee e 28, 106, 109, 110
SQLIite ..oovvviiieeee e 6,117, 189, 190, 191, 197 UPDATE..SET .ottt 190
SQLIteAdMIN...coiiiiiiiiiieeee e 189 UPVAT ceitiiiiieeeiieeeeite e stee s e sbeeessateeseeaee s 45
stack operation... 6,136, 138 UFTBIOCK .o, 114
stack......... ...44, 46, 135, 136, 137, 211
StAGE SIZE .uvvriiiiiiiiiiiiee e 137 vaccination protection..........cccccovviiniieeennn. 172
stage... 13, 14, 15, 16, 66, 71, 81, 102, 103, 104 variable. 4, 15ff, 32ff, 70ff, 102ff, 164, 209, 210
variable, globalcccccoevivennns 24, 27, 35, 37

variable, local25, 32, 35,102, 210

Index

216

variables. .15, 16, 24, 28, 37, 38, 78, 80, 82
VECEON .

verification code........

Vigenére encryption
VIP-CUStOMEr...ccvvviiiiiiieiriiiiieeeeiieeeeeieanee

Visual StePPING...ccccvvrrveererereerie e,
visualization................ 8, 23, 30, 37, 95, 96, 163
Von-Neumann neighborhood 149, 150
wait until ..., 35
Wt oo 35, 125, 141
warehouse management .6, 188, 189, 191, 193
WaATP toveiiiiiieeeeeesninrreeesenaaes 63, 65, 66, 85, 107
WAV fil€..uiiiiiiiiicieeeciee e, 95, 143
WAy, Shortest......cccevvveviereciecee e 4,40
web services access (https)ccccevevvecunennee. 189
WEDCIraWIer.....coiviiiiiieieciee e 182
website.......coveennneen. 6,169, 182, 183, 184, 186
WEIENT 1 54, 183, 187
with inputs

Wolfram, Stephen ..

WOTKING COPY wvvieiiiieiiieeeeiieeeereeesveeesiaea e
XMLAIle oo, 82,114
XOR encryptionccceeeeeeeieniiiieeee e 29

XOR Bate...uvvvieiiiiiiiieeeee e 29, 60, 62

