
Version: v1.2.0 (fba92ef) 1



The Docker Book

James Turnbull

September 2, 2014
Version: v1.2.0 (fba92ef)
Website: The Docker Book

http://www.dockerbook.com


Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2014 - James Turnbull <james@lovedthanlost.net>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+thedockerbook@lovedthanlost.net


Contents
Page

List of Figures ix
List of Listings xxii
Foreword 1

Who is this book for? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Credits and Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Technical Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Scott Collier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
John Ferlito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Paul Nasrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Technical Illustrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Proofreader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Conventions in the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Code and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Colophon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1 Introduction 6
Introducing Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

An easy and lightweight way to model reality . . . . . . . . . . . . . . 8
A logical segregation of duties . . . . . . . . . . . . . . . . . . . . . . . 8
Fast, efficient development life cycle . . . . . . . . . . . . . . . . . . . 8
Encourages service orientated architecture . . . . . . . . . . . . . . . . 9

i



Contents

Docker components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Docker client and server . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Docker images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Registries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

What can you use Docker for? . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Docker with configuration management . . . . . . . . . . . . . . . . . . . 13
Docker's technical components . . . . . . . . . . . . . . . . . . . . . . . . . 15
What's in the book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Docker resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2 Installing Docker 18
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Installing on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Checking for prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Installing Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Docker and UFW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Installing on Red Hat and family . . . . . . . . . . . . . . . . . . . . . . . . 25
Checking for prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Installing Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Starting the Docker daemon on the Red Hat family . . . . . . . . . . . 28

Boot2Docker installation on OS X . . . . . . . . . . . . . . . . . . . . . . . 29
Installing Boot2Docker on OSX . . . . . . . . . . . . . . . . . . . . . . . 30
Setting up Boot2Docker on OSX . . . . . . . . . . . . . . . . . . . . . . . 31
Testing Boot2Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Boot2Docker installation on Windows . . . . . . . . . . . . . . . . . . . . . 32
Installing Boot2Docker on Windows . . . . . . . . . . . . . . . . . . . . 32
Setting up Boot2Docker on Windows . . . . . . . . . . . . . . . . . . . 33
Testing Boot2Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Using Boot2Docker with this book . . . . . . . . . . . . . . . . . . . . . . . 35
Docker installation script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Binary installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
The Docker daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Configuring the Docker daemon . . . . . . . . . . . . . . . . . . . . . . 39
Checking that the Docker daemon is running . . . . . . . . . . . . . . 40

Version: v1.2.0 (fba92ef) ii



Contents

Upgrading Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Docker user interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3 Getting Started with Docker 44
Ensuring Docker is ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Building our first container . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Working with our first container . . . . . . . . . . . . . . . . . . . . . . . . 48
Container naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Starting a stopped container . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Attaching to a container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Creating daemonized containers . . . . . . . . . . . . . . . . . . . . . . . . 53
Seeing what's happening inside our container . . . . . . . . . . . . . . . . 54
Inspecting the container's processes . . . . . . . . . . . . . . . . . . . . . . 55
Stopping a daemonized container . . . . . . . . . . . . . . . . . . . . . . . 56
Finding out more about our container . . . . . . . . . . . . . . . . . . . . . . 57
Deleting a container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 Working with Docker images and repositories 61
What is a Docker image? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Listing Docker images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Pulling images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Searching for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Building our own images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Creating a Docker Hub account . . . . . . . . . . . . . . . . . . . . . . . 72
Using Docker commit to create images . . . . . . . . . . . . . . . . . . 74
Building images with a Dockerfile . . . . . . . . . . . . . . . . . . . . . 76
Building the image from our Dockerfile . . . . . . . . . . . . . . . . . . 79
What happens if an instruction fails? . . . . . . . . . . . . . . . . . . . 82
Dockerfiles and the build cache . . . . . . . . . . . . . . . . . . . . . . . 84
Using the build cache for templating . . . . . . . . . . . . . . . . . . . 84
Viewing our new image . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Launching a container from our new image . . . . . . . . . . . . . . . 86
Dockerfile instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Version: v1.2.0 (fba92ef) iii



Contents

Pushing images to the Docker Hub . . . . . . . . . . . . . . . . . . . . . . . 103
Automated Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Deleting an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Running your own Docker registry . . . . . . . . . . . . . . . . . . . . . . . 114

Running a registry from a container . . . . . . . . . . . . . . . . . . . . 114
Testing the new registry . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Alternative Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Quay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Chapter 5 Testing with Docker 117

Using Docker to test a static website . . . . . . . . . . . . . . . . . . . . . . 118
An initial Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Building our Nginx image . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Building containers from our Nginx image . . . . . . . . . . . . . . . . 123
Editing our website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Using Docker to build and test a web application . . . . . . . . . . . . . . .127
Building our Sinatra application . . . . . . . . . . . . . . . . . . . . . . .127
Creating our Sinatra container . . . . . . . . . . . . . . . . . . . . . . . 128
Building a Redis image and container . . . . . . . . . . . . . . . . . . . . 131
Connecting to the Redis container . . . . . . . . . . . . . . . . . . . . . 132
Our Redis connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Linking Docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Using our container link to communicate . . . . . . . . . . . . . . . . . 143

Using Docker for continuous integration . . . . . . . . . . . . . . . . . . . 146
Build a Jenkins and Docker server . . . . . . . . . . . . . . . . . . . . . 148
Create a new Jenkins job . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Running our Jenkins job . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Next steps with our Jenkins job . . . . . . . . . . . . . . . . . . . . . . . 160
Summary of our Jenkins setup . . . . . . . . . . . . . . . . . . . . . . . 160

Multi-configuration Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Create a multi-configuration job . . . . . . . . . . . . . . . . . . . . . . . 161
Testing our multi-configuration job . . . . . . . . . . . . . . . . . . . . 166
Summary of our multi-configuration Jenkins . . . . . . . . . . . . . . 168

Other alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Version: v1.2.0 (fba92ef) iv



Contents

Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Shippable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Chapter 6 Building services with Docker 170

Building our first application . . . . . . . . . . . . . . . . . . . . . . . . . . 170
The Jekyll base image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Building the Jekyll base image . . . . . . . . . . . . . . . . . . . . . . . 172
The Apache image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Building the Jekyll Apache image . . . . . . . . . . . . . . . . . . . . . 175
Launching our Jekyll site . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Updating our Jekyll site . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Backing up our Jekyll volume . . . . . . . . . . . . . . . . . . . . . . . . . 181
Extending our Jekyll website example . . . . . . . . . . . . . . . . . . . 182

Building a Java application server with Docker . . . . . . . . . . . . . . . 183
A WAR file fetcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Fetching a WAR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Our Tomcat 7 application server . . . . . . . . . . . . . . . . . . . . . . 186
Running our WAR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Building on top of our Tomcat application server . . . . . . . . . . . . 189

A multi-container application stack . . . . . . . . . . . . . . . . . . . . . . 192
The Node.js image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
The Redis base image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
The Redis primary image . . . . . . . . . . . . . . . . . . . . . . . . . . .197
The Redis replica image . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Creating our Redis back-end cluster . . . . . . . . . . . . . . . . . . . . 199
Creating our Node container . . . . . . . . . . . . . . . . . . . . . . . . 205
Capturing our application logs . . . . . . . . . . . . . . . . . . . . . . . 206
Summary of our Node stack . . . . . . . . . . . . . . . . . . . . . . . . . 210

Managing Docker containers without SSH . . . . . . . . . . . . . . . . . . . 211
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Chapter 7 Docker Orchestration and Service Discovery 214
Fig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Installing Fig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Version: v1.2.0 (fba92ef) v



Contents

Getting our sample application . . . . . . . . . . . . . . . . . . . . . . . .217
The fig.yml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Running Fig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Using Fig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Fig in summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Consul, Service Discovery and Docker . . . . . . . . . . . . . . . . . . . . . 229
Building a Consul image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Testing a Consul container locally . . . . . . . . . . . . . . . . . . . . . 235
Running a Consul cluster in Docker . . . . . . . . . . . . . . . . . . . . .237
Starting the Consul bootstrap node . . . . . . . . . . . . . . . . . . . . . 240
Starting the remaining nodes . . . . . . . . . . . . . . . . . . . . . . . . 243
Running a distributed service with Consul in Docker . . . . . . . . . . 250

Orchestration alternatives and components . . . . . . . . . . . . . . . . . . 260
Fleet and etcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Apache Mesos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Helios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Centurion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Libswarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Chapter 8 Using the Docker API 264

The Docker APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
First steps with the Remote API . . . . . . . . . . . . . . . . . . . . . . . . . 265
Testing the Docker Remote API . . . . . . . . . . . . . . . . . . . . . . . . . .267

Managing images with the API . . . . . . . . . . . . . . . . . . . . . . . 268
Managing containers with the API . . . . . . . . . . . . . . . . . . . . . . 271

Improving TProv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Authenticating the Docker Remote API . . . . . . . . . . . . . . . . . . . . 280

Create a Certificate Authority . . . . . . . . . . . . . . . . . . . . . . . . . 281
Create a server certificate signing request and key . . . . . . . . . . . 282
Configuring the Docker daemon . . . . . . . . . . . . . . . . . . . . . . 285
Creating a client certificate and key . . . . . . . . . . . . . . . . . . . . .287
Configuring our Docker client for authentication . . . . . . . . . . . . 289

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Version: v1.2.0 (fba92ef) vi



Contents

Chapter 9 Getting help and extending Docker 292
Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

The Docker user and dev mailing lists . . . . . . . . . . . . . . . . . . . 293
Docker on IRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Docker on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Reporting issues for Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Setting up a build environment . . . . . . . . . . . . . . . . . . . . . . . . . 295

Install Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Install source and build tools . . . . . . . . . . . . . . . . . . . . . . . . 295
Check out the source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Contributing to the documentation . . . . . . . . . . . . . . . . . . . . 296
Build the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
Running the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Use Docker inside our development environment . . . . . . . . . . . . 299
Submitting a pull request . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Merge approval and maintainers . . . . . . . . . . . . . . . . . . . . . . 302

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Index 304

Version: v1.2.0 (fba92ef) vii



List of Figures
1.1 Docker architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Installing Boot2Docker on OSX . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Running Boot2Docker on OSX . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Installing Boot2Docker on Windows . . . . . . . . . . . . . . . . . . . . 33
2.4 Running Boot2Docker on Windows . . . . . . . . . . . . . . . . . . . . 34
3.1 Listing Docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 The Docker filesystem layers . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Docker Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Creating a Docker Hub account. . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Your image on the Docker Hub. . . . . . . . . . . . . . . . . . . . . . . 105
4.5 The Add Repository button. . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 Account linking options. . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
4.7 Linking your GitHub account . . . . . . . . . . . . . . . . . . . . . . . . 108
4.8 Selecting your repository. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 Configuring your Automated Build. . . . . . . . . . . . . . . . . . . . . 110
4.10Creating your Automated Build. . . . . . . . . . . . . . . . . . . . . . . . 111
4.11Deleting a repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1 Browsing the Nginx test site. . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Browsing the edited Nginx test site. . . . . . . . . . . . . . . . . . . . . 126
5.3 Browsing the Jenkins server. . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4 Creating a new Jenkins job. . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.5 Jenkins job details part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6 Jenkins job details part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . .157
5.7 Running the Jenkins job. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

viii



List of Figures

5.8 The Jenkins job details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.9 The Jenkins job console output. . . . . . . . . . . . . . . . . . . . . . . 159
5.10Creating a multi-configuration job. . . . . . . . . . . . . . . . . . . . . . 161
5.11Configuring a multi-configuration job Part 1. . . . . . . . . . . . . . . 162
5.12Configuring a multi-configuration job Part 2. . . . . . . . . . . . . . . 163
5.13Our Jenkins multi-configuration job . . . . . . . . . . . . . . . . . . . . 165
5.14The centos sub-job. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.15The centos sub-job details. . . . . . . . . . . . . . . . . . . . . . . . . . . .167
5.16The centos sub-job console output. . . . . . . . . . . . . . . . . . . . . . .167
6.1 Our Jekyll website. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.2 Our updated Jekyll website. . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3 Our Tomcat sample application. . . . . . . . . . . . . . . . . . . . . . . 188
6.4 Our TProv web application. . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.5 Downloading a sample application. . . . . . . . . . . . . . . . . . . . . . 191
6.6 Listing the Tomcat instances. . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.7 Our Node application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Sample Fig application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.2 The Consul web interface. . . . . . . . . . . . . . . . . . . . . . . . . . . .237
7.3 The Consul service in the web interface. . . . . . . . . . . . . . . . . . 248
7.4 The distributed_app service in the Consul web interface. . . . . . . . 258
7.5 More distributed_app services in the Consul web interface. . . . . . . 259

Version: v1.2.0 (fba92ef) ix



Listings
1 Sample code block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Checking for the Linux kernel version on Ubuntu . . . . . . . . . . . 21
2.2 Installing a 3.8 kernel on Ubuntu Precise . . . . . . . . . . . . . . . . 21
2.3 Updating the boot loader on Ubuntu Precise . . . . . . . . . . . . . . 22
2.4 Reboot the Ubuntu host . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Checking for Device Mapper . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Checking for Device Mapper in proc on Ubuntu . . . . . . . . . . . . 23
2.7 Loading the Device Mapper module . . . . . . . . . . . . . . . . . . . 23
2.8 Adding the Docker APT repository . . . . . . . . . . . . . . . . . . . . 23
2.9 Testing for curl installation . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10 Install curl if needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 Adding the Docker repository GPG key . . . . . . . . . . . . . . . . . 24
2.12 Updating APT sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.13 Installing the Docker packages on Ubuntu . . . . . . . . . . . . . . . 24
2.14 Checking Docker is installed on Ubuntu . . . . . . . . . . . . . . . . . 24
2.15 Old UFW forwarding policy . . . . . . . . . . . . . . . . . . . . . . . . 25
2.16 New UFW forwarding policy . . . . . . . . . . . . . . . . . . . . . . . 25
2.17 Reload the UFW firewall . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.18 Checking the Red Hat or Fedora kernel . . . . . . . . . . . . . . . . . 26
2.19 Checking for Device Mapper . . . . . . . . . . . . . . . . . . . . . . . . 26
2.20 Checking for Device Mapper in proc on Red Hat . . . . . . . . . . . 26
2.21 Installing the Device Mapper package . . . . . . . . . . . . . . . . . . 27
2.22 Loading the Device Mapper module . . . . . . . . . . . . . . . . . . . 27
2.23 Installing EPEL on Red Hat Enterprise Linux 6 and CentOS 6 . . . . 27
2.24 Installing the Docker package on Red Hat Enterprise Linux 6 and

CentOS 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

x



Listings

2.25 Installing Docker on RHEL 7 . . . . . . . . . . . . . . . . . . . . . . . . 28
2.26 Installing the Docker package on Fedora 19 . . . . . . . . . . . . . . 28
2.27 Installing the Docker package on Fedora 20 and later . . . . . . . . 28
2.28 Starting the Docker daemon on Red Hat 6 . . . . . . . . . . . . . . . 28
2.29 Ensuring the Docker daemon starts at boot on Red Hat 6 . . . . . . 29
2.30 Starting the Docker daemon on Red Hat 7 . . . . . . . . . . . . . . . 29
2.31 Ensuring the Docker daemon starts at boot on Red Hat 7 . . . . . . 29
2.32 Checking Docker is installed on the Red Hat family . . . . . . . . . . 29
2.33 Downloading the Boot2Docker PKG file . . . . . . . . . . . . . . . . . 30
2.34 Testing Boot2Docker on OSX . . . . . . . . . . . . . . . . . . . . . . . 32
2.35 Downloading the Boot2Docker .EXE file . . . . . . . . . . . . . . . . 33
2.36 Testing Boot2Docker on Windows . . . . . . . . . . . . . . . . . . . . 35
2.37 Boot2Docker launch message . . . . . . . . . . . . . . . . . . . . . . . 35
2.38 Getting the Boot2Docker IP address . . . . . . . . . . . . . . . . . . . 36
2.39 Initial curl command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.40 Updated curl command . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.41 Testing for curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.42 Installing curl on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.43 Installing curl on Fedora . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.44 Installing Docker from the installation script . . . . . . . . . . . . . . 37
2.45 Downloading the Docker binary . . . . . . . . . . . . . . . . . . . . . 38
2.46 Changing Docker daemon networking . . . . . . . . . . . . . . . . . . 39
2.47 Using the DOCKER_HOST environment variable . . . . . . . . . . . . 39
2.48 Binding the Docker daemon to a different socket . . . . . . . . . . . 40
2.49 Binding the Docker daemon to multiple places . . . . . . . . . . . . 40
2.50 Turning on Docker daemon debug . . . . . . . . . . . . . . . . . . . . 40
2.51 Checking the status of the Docker daemon . . . . . . . . . . . . . . . 41
2.52 Starting and stopping Docker with Upstart . . . . . . . . . . . . . . . 41
2.53 Starting and stopping Docker on Red Hat and Fedora . . . . . . . . 41
2.54 The Docker daemon isn't running . . . . . . . . . . . . . . . . . . . . . 41
2.55 Upgrade docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Checking the docker binary works . . . . . . . . . . . . . . . . . . . . 45
3.2 Creating our first container . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 The docker run command . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Our first container's shell . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Version: v1.2.0 (fba92ef) xi



Listings

3.5 Checking the container's hostname . . . . . . . . . . . . . . . . . . . . 48
3.6 Checking the container's /etc/hosts . . . . . . . . . . . . . . . . . . . 48
3.7 Checking the container's interfaces . . . . . . . . . . . . . . . . . . . . 49
3.8 Checking container's processes . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Installing a package in our first container . . . . . . . . . . . . . . . . 49
3.10 Naming a container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.11 Starting a stopped container . . . . . . . . . . . . . . . . . . . . . . . . 51
3.12 Starting a stopped container by ID . . . . . . . . . . . . . . . . . . . . 52
3.13 Attaching to a running container . . . . . . . . . . . . . . . . . . . . . 52
3.14 Attaching to a running container via ID . . . . . . . . . . . . . . . . . 52
3.15 Inside our re-attached container . . . . . . . . . . . . . . . . . . . . . 53
3.16 Creating a long running container . . . . . . . . . . . . . . . . . . . . 53
3.17 Viewing our running daemon_dave container . . . . . . . . . . . . . 53
3.18 Fetching the logs of our daemonized container . . . . . . . . . . . . 54
3.19 Tailing the logs of our daemonized container . . . . . . . . . . . . . 54
3.20 Tailing the logs of our daemonized container . . . . . . . . . . . . . 55
3.21 Inspecting the processes of the daemonized container . . . . . . . . 55
3.22 The docker top output . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.23 Stopping the running Docker container . . . . . . . . . . . . . . . . . 56
3.24 Stopping the running Docker container by ID . . . . . . . . . . . . . 56
3.25 Inspecting a container . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.26 Selectively inspecting a container . . . . . . . . . . . . . . . . . . . . 58
3.27 Inspecting the container's IP address . . . . . . . . . . . . . . . . . . . 58
3.28 Inspecting multiple containers . . . . . . . . . . . . . . . . . . . . . . 58
3.29 Deleting a container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.30 Deleting all containers . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Revisiting creating a basic Docker container . . . . . . . . . . . . . . 61
4.2 Listing Docker images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Pulling the Ubuntu image . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Listing all the ubuntu Docker images . . . . . . . . . . . . . . . . . . 66
4.5 Running a tagged Docker image . . . . . . . . . . . . . . . . . . . . . 67
4.6 Docker run and the default latest tag . . . . . . . . . . . . . . . . . . 68
4.7 Pulling the fedora image . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Viewing the fedora image . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 Pulling a tagged fedora image . . . . . . . . . . . . . . . . . . . . . . . 70

Version: v1.2.0 (fba92ef) xii



Listings

4.10 Searching for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11 Pulling down the jamtur01/puppetmaster image . . . . . . . . . . . 71
4.12 Creating a Docker container from the Puppet master image . . . . . 71
4.13 Logging into the Docker Hub . . . . . . . . . . . . . . . . . . . . . . . 73
4.14 Creating a custom container to modify . . . . . . . . . . . . . . . . . 74
4.15 Adding the Apache package . . . . . . . . . . . . . . . . . . . . . . . . 74
4.16 Committing the custom container . . . . . . . . . . . . . . . . . . . . 75
4.17 Reviewing our new image . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.18 Committing another custom container . . . . . . . . . . . . . . . . . . 75
4.19 Inspecting our committed image . . . . . . . . . . . . . . . . . . . . . 76
4.20 Running a container from our committed image . . . . . . . . . . . 76
4.21 Creating a sample repository . . . . . . . . . . . . . . . . . . . . . . . 77
4.22 Our first Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.23 The RUN instruction in exec form . . . . . . . . . . . . . . . . . . . . 79
4.24 Running the Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.25 Tagging a build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.26 Building from a Git repository . . . . . . . . . . . . . . . . . . . . . . . 81
4.27 Uploading the build context to the daemon . . . . . . . . . . . . . . 81
4.28 Managing a failed instruction . . . . . . . . . . . . . . . . . . . . . . . 83
4.29 Creating a container from the last successful step . . . . . . . . . . . 83
4.30 Bypassing the Dockerfile build cache . . . . . . . . . . . . . . . . . . 84
4.31 A template Ubuntu Dockerfile . . . . . . . . . . . . . . . . . . . . . . . 84
4.32 A template Fedora Dockerfile . . . . . . . . . . . . . . . . . . . . . . . 85
4.33 Listing our new Docker image . . . . . . . . . . . . . . . . . . . . . . . 85
4.34 Using the docker history command . . . . . . . . . . . . . . . . . . . . 86
4.35 Launching a container from our new image . . . . . . . . . . . . . . 86
4.36 Viewing the Docker port mapping . . . . . . . . . . . . . . . . . . . . 87
4.37 The docker port command . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.38 Exposing a specific port with -p . . . . . . . . . . . . . . . . . . . . . . 88
4.39 Binding to a different port . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.40 Binding to a specific interface . . . . . . . . . . . . . . . . . . . . . . . 88
4.41 Binding to a random port on a specific interface . . . . . . . . . . . 88
4.42 Exposing a port with docker run . . . . . . . . . . . . . . . . . . . . . 89
4.43 Connecting to the container via curl . . . . . . . . . . . . . . . . . . . 89
4.44 Specifying a specific command to run . . . . . . . . . . . . . . . . . . 90

Version: v1.2.0 (fba92ef) xiii



Listings

4.45 Using the CMD instruction . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.46 Passing parameters to the CMD instruction . . . . . . . . . . . . . . . 90
4.47 Overriding CMD instructions in the Dockerfile . . . . . . . . . . . . . 91
4.48 Launching a container with a CMD instruction . . . . . . . . . . . . 91
4.49 Overriding a command locally . . . . . . . . . . . . . . . . . . . . . . 92
4.50 Specifying an ENTRYPOINT . . . . . . . . . . . . . . . . . . . . . . . . 92
4.51 Specifying an ENTRYPOINT parameter . . . . . . . . . . . . . . . . . 93
4.52 Rebuilding static_web with a new ENTRYPOINT . . . . . . . . . . . 93
4.53 Using docker run with ENTRYPOINT . . . . . . . . . . . . . . . . . . 93
4.54 Using ENTRYPOINT and CMD together . . . . . . . . . . . . . . . . . 93
4.55 Using the WORKDIR instruction . . . . . . . . . . . . . . . . . . . . . 94
4.56 Overridding the working directory . . . . . . . . . . . . . . . . . . . . 95
4.57 Setting an environment variable in Dockerfile . . . . . . . . . . . . . 95
4.58 Prefixing a RUN instruction . . . . . . . . . . . . . . . . . . . . . . . . 95
4.59 Executing with an ENV prefix . . . . . . . . . . . . . . . . . . . . . . . 95
4.60 Persisent environment variables in Docker containers . . . . . . . . 95
4.61 Runtime environment variables . . . . . . . . . . . . . . . . . . . . . . 96
4.62 Using the USER instruction . . . . . . . . . . . . . . . . . . . . . . . . 96
4.63 Specifying USER and GROUP variants . . . . . . . . . . . . . . . . . . 96
4.64 Using the VOLUME instruction . . . . . . . . . . . . . . . . . . . . . . 97
4.65 Using multiple VOLUME instructions . . . . . . . . . . . . . . . . . . 97
4.66 Using the ADD instruction . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.67 URL as the source of an ADD instruction . . . . . . . . . . . . . . . . 98
4.68 URL as the source of an ADD instruction . . . . . . . . . . . . . . . . 98
4.69 Using the COPY instruction . . . . . . . . . . . . . . . . . . . . . . . . 99
4.70 Adding ONBUILD instructions . . . . . . . . . . . . . . . . . . . . . . . 100
4.71 Showing ONBUILD instructions with docker inspect . . . . . . . . . 101
4.72 A new ONBUILD image Dockerfile . . . . . . . . . . . . . . . . . . . . 101
4.73 Building the apache2 image . . . . . . . . . . . . . . . . . . . . . . . . 101
4.74 The webapp Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.75 Building our webapp image . . . . . . . . . . . . . . . . . . . . . . . . 102
4.76 Trying to push a root image . . . . . . . . . . . . . . . . . . . . . . . . 103
4.77 Pushing a Docker image . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.78 Deleting a Docker image . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.79 Deleting multiple Docker images . . . . . . . . . . . . . . . . . . . . . 113

Version: v1.2.0 (fba92ef) xiv



Listings

4.80 Deleting all images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.81 Running a container-based registry . . . . . . . . . . . . . . . . . . . 114
4.82 Listing the jamtur01 static_web Docker image . . . . . . . . . . . . . 115
4.83 Tagging our image for our new registry . . . . . . . . . . . . . . . . . 115
4.84 Pushing an image to our new registry . . . . . . . . . . . . . . . . . . 115
4.85 Building a container from our local registry . . . . . . . . . . . . . . 116
5.1 Creating a directory for our Nginx Dockerfile . . . . . . . . . . . . . 118
5.2 Our basic Dockerfile for website testing . . . . . . . . . . . . . . . . . 119
5.3 The global.conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 The nginx.conf configuration file . . . . . . . . . . . . . . . . . . . . . 120
5.5 Building our new Nginx image . . . . . . . . . . . . . . . . . . . . . . 121
5.6 Showing the history of the Nginx image . . . . . . . . . . . . . . . . . 122
5.7 Downloading our test site . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 Building our first Nginx testing container . . . . . . . . . . . . . . . . 123
5.9 Controlling the write status of a volume . . . . . . . . . . . . . . . . 124
5.10 Viewing the Nginx container . . . . . . . . . . . . . . . . . . . . . . . 125
5.11 Editing our website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.12 Old title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.13 New title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.14 Dockerfile for web application testing . . . . . . . . . . . . . . . . . . 127
5.15 Building our new Sinatra image . . . . . . . . . . . . . . . . . . . . . . 128
5.16 Download our Sinatra web application . . . . . . . . . . . . . . . . . 128
5.17 Making webapp/bin/webapp executable . . . . . . . . . . . . . . . . 128
5.18 Launching our first Sinatra container . . . . . . . . . . . . . . . . . . 128
5.19 The CMD instruction in our Dockerfile . . . . . . . . . . . . . . . . . 129
5.20 Checking the logs of our Sinatra container . . . . . . . . . . . . . . . 129
5.21 Tailing the logs of our Sinatra container . . . . . . . . . . . . . . . . 129
5.22 Using docker top to list our Sinatra processes . . . . . . . . . . . . . 130
5.23 Checking the Sinatra port mapping . . . . . . . . . . . . . . . . . . . 130
5.24 Testing our Sinatra application . . . . . . . . . . . . . . . . . . . . . . 130
5.25 Dockerfile for Redis image . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.26 Building our Redis image . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.27 Launching a Redis container . . . . . . . . . . . . . . . . . . . . . . . . 131
5.28 Launching a Redis container . . . . . . . . . . . . . . . . . . . . . . . . 132
5.29 Installing the redis-tools package on Ubuntu . . . . . . . . . . . . . . 132

Version: v1.2.0 (fba92ef) xv



Listings

5.30 Testing our Redis connection . . . . . . . . . . . . . . . . . . . . . . . 132
5.31 The docker0 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.32 The veth interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.33 The eth0 interface in a container . . . . . . . . . . . . . . . . . . . . . 134
5.34 Tracing a route out of our container . . . . . . . . . . . . . . . . . . . 135
5.35 Docker iptables and NAT . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.36 Redis container's networking configuration . . . . . . . . . . . . . . . 137
5.37 Finding the Redis container's IP address . . . . . . . . . . . . . . . . . 137
5.38 Talking directly to the Redis container . . . . . . . . . . . . . . . . . 138
5.39 Restarting our Redis container . . . . . . . . . . . . . . . . . . . . . . 138
5.40 Finding the restarted Redis container's IP address . . . . . . . . . . . 138
5.41 Starting another Redis container . . . . . . . . . . . . . . . . . . . . . 139
5.42 Linking our Redis container . . . . . . . . . . . . . . . . . . . . . . . . 140
5.43 Linking our Redis container . . . . . . . . . . . . . . . . . . . . . . . . 141
5.44 The webapp's /etc/hosts file . . . . . . . . . . . . . . . . . . . . . . . . 142
5.45 Pinging the db container . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.46 Showing linked environment variables . . . . . . . . . . . . . . . . . 143
5.47 The linked via env variables Redis connection . . . . . . . . . . . . . 144
5.48 The linked via hosts Redis connection . . . . . . . . . . . . . . . . . . 144
5.49 Starting the Redis-enabled Sinatra application . . . . . . . . . . . . . 145
5.50 Testing our Redis-enabled Sinatra application . . . . . . . . . . . . . 145
5.51 Confirming Redis contains data . . . . . . . . . . . . . . . . . . . . . . 146
5.52 Jenkins and Docker Dockerfile . . . . . . . . . . . . . . . . . . . . . . 149
5.53 Building our Docker-Jenkins image . . . . . . . . . . . . . . . . . . . 151
5.54 Running our Docker-Jenkins image . . . . . . . . . . . . . . . . . . . 151
5.55 Checking the Docker Jenkins container logs . . . . . . . . . . . . . . 152
5.56 Checking that is Jenkins up and running . . . . . . . . . . . . . . . . 152
5.57 The Docker shell script for Jenkins jobs . . . . . . . . . . . . . . . . . 155
5.58 The Docker test job Dockerfile . . . . . . . . . . . . . . . . . . . . . . 156
5.59 Jenkins multi-configuration shell step . . . . . . . . . . . . . . . . . . 164
5.60 Our CentOS-based Dockerfile . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Creating our Jekyll Dockerfile . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Jekyll Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3 Building our Jekyll image . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.4 Viewing our new Jekyll Base image . . . . . . . . . . . . . . . . . . . 173

Version: v1.2.0 (fba92ef) xvi



Listings

6.5 Creating our Apache Dockerfile . . . . . . . . . . . . . . . . . . . . . . 174
6.6 Jekyll Apache Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.7 Building our Jekyll Apache image . . . . . . . . . . . . . . . . . . . . 175
6.8 Viewing our new Jekyll Apache image . . . . . . . . . . . . . . . . . 176
6.9 Getting a sample Jekyll blog . . . . . . . . . . . . . . . . . . . . . . . . 176
6.10 Creating a Jekyll container . . . . . . . . . . . . . . . . . . . . . . . . 177
6.11 Creating an Apache container . . . . . . . . . . . . . . . . . . . . . . . 178
6.12 Resolving the Apache container's port . . . . . . . . . . . . . . . . . . 178
6.13 Editing our Jekyll blog . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.14 Restarting our james_blog container . . . . . . . . . . . . . . . . . . . 179
6.15 Checking the james_blog container logs . . . . . . . . . . . . . . . . . 180
6.16 Backing up the /var/www/html volume . . . . . . . . . . . . . . . . 181
6.17 Backup command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.18 Creating our fetcher Dockerfile . . . . . . . . . . . . . . . . . . . . . . 183
6.19 Our war file fetcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.20 Building our fetcher image . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.21 Fetching a war file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.22 Inspecting our Sample volume . . . . . . . . . . . . . . . . . . . . . . 185
6.23 Listing the volume directory . . . . . . . . . . . . . . . . . . . . . . . . 186
6.24 Creating our Tomcat 7 Dockerfile . . . . . . . . . . . . . . . . . . . . 186
6.25 Our Tomcat 7 Application server . . . . . . . . . . . . . . . . . . . . . 187
6.26 Building our Tomcat 7 image . . . . . . . . . . . . . . . . . . . . . . . 187
6.27 Creating our first Tomcat instance . . . . . . . . . . . . . . . . . . . . 188
6.28 Identifying the Tomcat application port . . . . . . . . . . . . . . . . . 188
6.29 Installing Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.30 Installing the TProv application . . . . . . . . . . . . . . . . . . . . . . 189
6.31 Launching the TProv application . . . . . . . . . . . . . . . . . . . . . 190
6.32 Creating our Node.js Dockerfile . . . . . . . . . . . . . . . . . . . . . . 193
6.33 Our Node.js image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.34 Our Node.js server.js application . . . . . . . . . . . . . . . . . . . . . 195
6.35 Building our Node.js image . . . . . . . . . . . . . . . . . . . . . . . . 196
6.36 Creating our Redis base Dockerfile . . . . . . . . . . . . . . . . . . . . 196
6.37 Our Redis base image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.38 Building our Redis base image . . . . . . . . . . . . . . . . . . . . . . 197
6.39 Creating our Redis primary Dockerfile . . . . . . . . . . . . . . . . . . 198

Version: v1.2.0 (fba92ef) xvii



Listings

6.40 Our Redis primary image . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.41 Building our Redis primary image . . . . . . . . . . . . . . . . . . . . 198
6.42 Creating our Redis replica Dockerfile . . . . . . . . . . . . . . . . . . 199
6.43 Our Redis replica image . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.44 Building our Redis replica image . . . . . . . . . . . . . . . . . . . . . 199
6.45 Running the Redis primary container . . . . . . . . . . . . . . . . . . 200
6.46 Our Redis primary logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.47 Reading our Redis primary logs . . . . . . . . . . . . . . . . . . . . . . 201
6.48 Running our first Redis replica container . . . . . . . . . . . . . . . . 201
6.49 Reading our Redis replica logs . . . . . . . . . . . . . . . . . . . . . . 202
6.50 Running our second Redis replica container . . . . . . . . . . . . . . 203
6.51 Our Redis replica2 logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.52 Running our Node.js container . . . . . . . . . . . . . . . . . . . . . . 205
6.53 The nodeapp console log . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.54 Node application output . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.55 Creating our Logstash Dockerfile . . . . . . . . . . . . . . . . . . . . . 206
6.56 Our Logstash image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.57 Our Logstash configuration . . . . . . . . . . . . . . . . . . . . . . . . 208
6.58 Building our Logstash image . . . . . . . . . . . . . . . . . . . . . . . . 209
6.59 Launching a Logstash container . . . . . . . . . . . . . . . . . . . . . . 209
6.60 The logstash container's logs . . . . . . . . . . . . . . . . . . . . . . . . 209
6.61 A Node event in Logstash . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.62 Using docker kill to send signals . . . . . . . . . . . . . . . . . . . . . 211
6.63 Installing nsenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.64 Finding the process ID of the container . . . . . . . . . . . . . . . . . 212
6.65 Entering a container with nsenter . . . . . . . . . . . . . . . . . . . . 212
6.66 Running a command inside a container with nsenter . . . . . . . . . 212
7.1 Installing Fig on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.2 Installing Fig on OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.3 Installing Fig via Pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.4 Testing Fig is working . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.5 Creating the figapp directory . . . . . . . . . . . . . . . . . . . . . . . 217
7.6 The app.py file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.7 The requirements.txt file . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.8 The figapp Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Version: v1.2.0 (fba92ef) xviii



Listings

7.9 Building the figapp application . . . . . . . . . . . . . . . . . . . . . . 220
7.10 Creating the fig.yml file . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.11 The fig.yml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.12 The build instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.13 The docker run equivalent command . . . . . . . . . . . . . . . . . . 223
7.14 Running fig up with our sample application . . . . . . . . . . . . . . 224
7.15 Fig service log output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.16 Running Fig daemonized . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.17 Restarting Fig as daemonized . . . . . . . . . . . . . . . . . . . . . . . 226
7.18 Running the fig ps command . . . . . . . . . . . . . . . . . . . . . . . 227
7.19 Showing a Fig services logs . . . . . . . . . . . . . . . . . . . . . . . . 227
7.20 Stopping running services . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.21 Verifying our Fig services have been stopped . . . . . . . . . . . . . 228
7.22 Removing Fig services . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.23 Showing no Fig services . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.24 Creating a Consul Dockerfile directory . . . . . . . . . . . . . . . . . 231
7.25 The Consul Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.26 The consul.json configuration file . . . . . . . . . . . . . . . . . . . . 233
7.27 Building our Consul image . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.28 Running a local Consul node . . . . . . . . . . . . . . . . . . . . . . . 236
7.29 Pulling down the Consul image . . . . . . . . . . . . . . . . . . . . . . 237
7.30 Assigning public IP on larry . . . . . . . . . . . . . . . . . . . . . . . . 238
7.31 Assigning public IP on curly and moe . . . . . . . . . . . . . . . . . . 238
7.32 Adding the cluster IP address . . . . . . . . . . . . . . . . . . . . . . . 239
7.33 Getting the docker0 IP address . . . . . . . . . . . . . . . . . . . . . . 239
7.34 Original Docker defaults . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.35 New Docker defaults on larry . . . . . . . . . . . . . . . . . . . . . . . 240
7.36 Restarting the Docker daemon on larry . . . . . . . . . . . . . . . . . 240
7.37 Start the Consul bootstrap node . . . . . . . . . . . . . . . . . . . . . . 241
7.38 Consul agent command line arguments . . . . . . . . . . . . . . . . . 241
7.39 Starting bootstrap Consul node . . . . . . . . . . . . . . . . . . . . . . 242
7.40 Cluster leader error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.41 Starting the agent on curly . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.42 Launching the Consul agent on curly . . . . . . . . . . . . . . . . . . 243
7.43 Looking at the Curly agent logs . . . . . . . . . . . . . . . . . . . . . . 244

Version: v1.2.0 (fba92ef) xix



Listings

7.44 Curly joining Larry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.45 Starting the agent on curly . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.46 Consul logs on moe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.47 Consul leader election on larry . . . . . . . . . . . . . . . . . . . . . . 247
7.48 Testing the Consul DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.49 Querying another Consul service via DNS . . . . . . . . . . . . . . . . 249
7.50 Creating a distributed_app Dockerfile directory . . . . . . . . . . . . 250
7.51 The distributed_app Dockerfile . . . . . . . . . . . . . . . . . . . . . . 251
7.52 The uWSGI configuration . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.53 The distributed_app config.ru file . . . . . . . . . . . . . . . . . . . . . 252
7.54 The Consul plugin URL . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.55 Building our distributed_app image . . . . . . . . . . . . . . . . . . . 253
7.56 Creating a distributed_client Dockerfile directory . . . . . . . . . . . 253
7.57 The distributed_client Dockerfile . . . . . . . . . . . . . . . . . . . . . 254
7.58 The distributed_client application . . . . . . . . . . . . . . . . . . . . 255
7.59 Building our distributed_client image . . . . . . . . . . . . . . . . . . 256
7.60 Starting distributed_app on larry . . . . . . . . . . . . . . . . . . . . . 257
7.61 The distributed_app log output . . . . . . . . . . . . . . . . . . . . . . 257
7.62 Starting distributed_app on curly . . . . . . . . . . . . . . . . . . . . . 258
7.63 Starting distributed_client on moe . . . . . . . . . . . . . . . . . . . . 259
7.64 The distributed_client logs on moe . . . . . . . . . . . . . . . . . . . . 260
8.1 Default systemd daemon start options . . . . . . . . . . . . . . . . . . 266
8.2 Network binding systemd daemon start options . . . . . . . . . . . . 266
8.3 Reloading and restarting the Docker daemon . . . . . . . . . . . . . 266
8.4 Connecting to a remote Docker daemon . . . . . . . . . . . . . . . . . 267
8.5 Revisiting the DOCKER_HOST environment variable . . . . . . . . . 267
8.6 Using the info API endpoint . . . . . . . . . . . . . . . . . . . . . . . . 268
8.7 Getting a list of images via API . . . . . . . . . . . . . . . . . . . . . . 269
8.8 Getting a specific image . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.9 Searching for images with the API . . . . . . . . . . . . . . . . . . . . 271
8.10 Listing running containers . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.11 Listing all containers via the API . . . . . . . . . . . . . . . . . . . . . 272
8.12 Creating a container via the API . . . . . . . . . . . . . . . . . . . . . 273
8.13 Configuring container launch via the API . . . . . . . . . . . . . . . . 273
8.14 Starting a container via the API . . . . . . . . . . . . . . . . . . . . . . 274

Version: v1.2.0 (fba92ef) xx



Listings

8.15 API equivalent for docker run command . . . . . . . . . . . . . . . . 274
8.16 Listing all containers via the API . . . . . . . . . . . . . . . . . . . . . 275
8.17 The legacy TProv container launch methods . . . . . . . . . . . . . . 276
8.18 The Docker Ruby client . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.19 Installing the Docker Ruby client API prerequisites . . . . . . . . . . 278
8.20 Testing our Docker API connection via irb . . . . . . . . . . . . . . . 278
8.21 Our updated TProv container management methods . . . . . . . . . 279
8.22 Checking for openssl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.23 Create a CA directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.24 Generating a private key . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.25 Creating a CA certificate . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.26 Creating a server key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.27 Creating our server CSR . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.28 Signing our CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.29 Removing the passphrase from the server key . . . . . . . . . . . . . 285
8.30 Securing the key and certificate on the Docker server . . . . . . . . 285
8.31 Enabling Docker TLS on systemd . . . . . . . . . . . . . . . . . . . . . 286
8.32 Reloading and restarting the Docker daemon . . . . . . . . . . . . . 286
8.33 Creating a client key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.34 Creating a client CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.35 Adding Client Authentication attributes . . . . . . . . . . . . . . . . . 288
8.36 Signing our client CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.37 Stripping out the client key pass phrase . . . . . . . . . . . . . . . . . 289
8.38 Copying the key and certificate on the Docker client . . . . . . . . . 290
8.39 Testing our TLS-authenticated connection . . . . . . . . . . . . . . . 290
8.40 Testing our TLS-authenticated connection . . . . . . . . . . . . . . . 291
9.1 Installing git on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.2 Installing git on Red Hat et al . . . . . . . . . . . . . . . . . . . . . . . 295
9.3 Check out the Docker source code . . . . . . . . . . . . . . . . . . . . 296
9.4 Building the Docker documentation . . . . . . . . . . . . . . . . . . . 296
9.5 Building the Docker environment . . . . . . . . . . . . . . . . . . . . . 297
9.6 Building the Docker binary . . . . . . . . . . . . . . . . . . . . . . . . 297
9.7 The Docker dev binary . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
9.8 Using the development daemon . . . . . . . . . . . . . . . . . . . . . . 298
9.9 Using the development binary . . . . . . . . . . . . . . . . . . . . . . 298

Version: v1.2.0 (fba92ef) xxi



Listings

9.10 Running the Docker tests . . . . . . . . . . . . . . . . . . . . . . . . . . 298
9.11 Docker test output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.12 Launching an interactive session . . . . . . . . . . . . . . . . . . . . . 300
9.13 The Docker DCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
9.14 Git commit signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Version: v1.2.0 (fba92ef) xxii



Foreword

Who is this book for?
The Docker Book is for developers, sysadmins, and DevOps-minded folks who
want to implement Docker™ and container-based virtualization.
There is an expectation that the reader has basic Linux/Unix skills and is familiar
with the command line, editing files, installing packages, managing services, and
basic networking.

NOTE This books focuses on Docker version 1.0.0 and later. It is not generally
backwards-compatible with earlier releases. Indeed, it is recommended that for
production purposes you use Docker version 1.0.0 or later.

Credits and Acknowledgments
• My partner and best friend, Ruth Brown, who continues to humor me despite
my continuing to write books.

• The team at Docker Inc., for developing Docker and helping out during the
writing of the book.

• The folks in the #docker channel and the Docker mailing list for helping out
when I got stuck.

1



Foreword

• Royce Gilbert for not only creating the amazing technical illustrations, but
also the cover.

• Abhinav Ajgaonkar for his Node.js and Express example application.
• The technical review team for keeping me honest and pointing out all the
stupid mistakes.

Images on pages 38, 45, 48, courtesy of Docker, Inc.
Docker™ is a registered trademark of Docker, Inc.

Technical Reviewers
Scott Collier
Scott Collier is a Senior Principal System Engineer for Red Hat’s Systems Design
and Engineering team. This team identifies and works on high-value solution
stacks based on input from Sales, Marketing, and Engineering teams and develops
reference architectures for consumption by internal and external customers. Scott
is a Red Hat Certified Architect (RHCA) with more than 15 years of IT experi-
ence, currently focused on Docker, OpenShift, and other products in the Red Hat
portfolio.
When he's not tinkering with distributed architectures, he can be found running,
hiking, camping, and eating barbecue around the Austin, TX, area with his wife
and three children. His notes on technology and other things can be found here.

John Ferlito
John is a serial entrepreneur as well as an expert in highly available and scalable
infrastructure. John is currently a founder and CTO of Bulletproof, who provide
Mission Critical Cloud, and CTO of Vquence, a Video Metrics aggregator.
In his spare time, John is involved in the FOSS communities. He was a co-
organizer of linux.conf.au 2007 and a committee member of SLUG in 2007,

Version: v1.2.0 (fba92ef) 2

http://colliernotes.com


Foreword

and he has worked on various open-source projects, including Debian, Ubuntu,
Puppet, and the Annodex suite. You can read more about John's work on his
blog. John has a Bachelor of Engineering (Computing) with Honors from the
University of New South Wales.

Paul Nasrat
Paul Nasrat works as an SRE at Google and is a Docker contributor. He's worked
on a variety of open source tools in the systems engineering space, including boot
loaders, package management, and configuration management.
Paul has worked in a variety of Systems Administration and Software Develop-
ment roles, including working as a Software Engineer at Red Hat and as an In-
frastructure Specialist Consultant at ThoughtWorks. Paul has spoken at various
conferences, from talking about Agile Infrastructure at Agile 2009 during the early
days of the DevOps movement to smaller meetups and conferences.

Technical Illustrator
Royce Gilbert has over 30 years' experience in CAD design, computer support, net-
work technologies, project management, and business systems analysis for major
Fortune 500 companies, including Enron, Compaq, Koch Industries, and Amoco
Corp. He is currently employed as a Systems/Business Analyst at Kansas State Uni-
versity in Manhattan, KS. In his spare time he does Freelance Art and Technical
Illustration as sole proprietor of Royce Art. He and his wife of 38 years are living
in and restoring a 127-year-old stone house nestled in the Flinthills of Kansas.

Proofreader
Q grew up in the New York area and has been a high school teacher, cupcake icer,
scientist wrangler, forensic anthropologist, and catastrophic disaster response

Version: v1.2.0 (fba92ef) 3

http://inodes.org/blog
mailto:ksuroyce@yahoo.com


Foreword

planner. She now resides in San Francisco, making music, acting, putting together
ng-newsletter, and taking care of the fine folks at Stripe.

Author
James is an author and open source geek. His most recent book was The LogStash
Book about the popular open source logging tool. James also authored two books
about Puppet (Pro Puppet and the earlier book about Puppet). He is the author
of three other books, including Pro Linux System Administration, Pro Nagios 2.0,
and Hardening Linux.
For a real job, James is VP of Services and Support for Docker, Inc. He was
formerly VP of Engineering at Venmo and VP Technical Operations for Puppet
Labs. He likes food, wine, books, photography, and cats. He is not overly keen
on long walks on the beach and holding hands.

Conventions in the book
This is an inline code statement.
This is a code block:

Listing 1: Sample code block
This is a code block

Long code strings are broken with ↩.

Code and Examples
You can find all the code and examples from the book on the website, or you can
check out the Git repo.

Version: v1.2.0 (fba92ef) 4

http://www.logstashbook.com
http://www.logstashbook.com
http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1590599780?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599780
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590594444?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590594444
http://www.dockerbook.com/code/index.html
https://github.com/jamtur01/dockerbook-code


Foreword

Colophon
This book was written in Markdown with a large dollop of LaTeX. It was then
converted to PDF and other formats using PanDoc (with some help from scripts
written by the excellent folks who wrote Backbone.js on Rails).

Errata
Please email any errata you find here.

Version
This is version v1.2.0 (fba92ef) of The Docker Book.

Version: v1.2.0 (fba92ef) 5

https://learn.thoughtbot.com/products/1-backbone-js-on-rails
mailto:james+errata@lovedthanlost.net


Chapter 1

Introduction

Containers have a long and storied history in computing. Unlike hypervisor vir-
tualization, where one or more independent machines run virtually on physical
hardware via an intermediation layer, containers instead run user space on top of
an operating system's kernel. As a result, container virtualization is often called
operating system-level virtualization. Container technology allows multiple iso-
lated user space instances to be run on a single host.
As a result of their status as guests of the operating system, containers are some-
times seen as less flexible: they can generally only run the same or a similar guest
operating system as the underlying host. For example, you can run Red Hat En-
terprise Linux on an Ubuntu server, but you can't run Microsoft Windows on top
of an Ubuntu server.
Containers have also been seen as less secure than the full isolation of hypervisor
virtualization. Countering this argument is that lightweight containers lack the
larger attack surface of the full operating system needed by a virtual machine
combined with the potential exposures of the hypervisor layer itself.
Despite these limitations, containers have been deployed in a variety of use
cases. They are popular for hyperscale deployments of multi-tenant services, for
lightweight sandboxing, and, despite concerns about their security, as process
isolation environments. Indeed, one of the more common examples of a container
is a chroot jail, which creates an isolated directory environment for running

6



Chapter 1: Introduction

processes. Attackers, if they breach the running process in the jail, then find
themselves trapped in this environment and unable to further compromise a host.
More recent container technologies have included OpenVZ, Solaris Zones, and
Linux containers like lxc. Using these more recent technologies, containers can
now look like full-blown hosts in their own right rather than just execution envi-
ronments. In Docker's case, having modern Linux kernel features, such as control
groups and namespaces, means that containers can have strong isolation, their
own network and storage stacks, as well as resource management capabilities to
allow friendly co-existence of multiple containers on a host.
Containers are generally considered a lean technology because they require lim-
ited overhead. Unlike traditional virtualization or paravirtualization technologies,
they do not require an emulation layer or a hypervisor layer to run and instead
use the operating system's normal system call interface. This reduces the overhead
required to run containers and can allow a greater density of containers to run on
a host.
Despite their history containers haven't achieved large-scale adoption. A large
part of this can be laid at the feet of their complexity: containers can be complex,
hard to set up, and difficult to manage and automate. Docker aims to change that.

Introducing Docker
Docker is an open-source engine that automates the deployment of applications
into containers. It was written by the team at Docker, Inc (formerly dotCloud Inc,
an early player in the Platform-as-a-Service (PAAS) market), and released by them
under the Apache 2.0 license.

NOTE Disclaimer and disclosure: I work at Docker.

So what is special about Docker? Docker adds an application deployment engine
on top of a virtualized container execution environment. It is designed to provide

Version: v1.2.0 (fba92ef) 7

http://openvz.org/
http://lxc.sourceforge.net/
http://www.docker.com/


Chapter 1: Introduction

a lightweight and fast environment in which to run your code as well as an efficient
workflow to get that code from your laptop to your test environment and then into
production. Docker is incredibly simple. Indeed, you can get started with Docker
on a minimal host running nothing but a compatible Linux kernel and a Docker
binary. Docker's mission is to provide:

An easy and lightweight way to model reality
Docker is fast. You can Dockerize your application in minutes. Docker relies on a
copy-on-write model so that making changes to your application is also incredibly
fast: only what you want to change gets changed.
You can then create containers running your applications. Most Docker contain-
ers take less than a second to launch. Removing the overhead of the hypervisor
also means containers are highly performant and you can pack more of them into
your hosts and make the best possible use of your resources.

A logical segregation of duties
With Docker, Developers care about their applications running inside containers,
and Operations cares about managing the containers. Docker is designed to en-
hance consistency by ensuring the environment in which your developers write
code matches the environments into which your applications are deployed. This
reduces the risk of "worked in dev, now an ops problem."

Fast, efficient development life cycle
Docker aims to reduce the cycle time between code being written and code being
tested, deployed, and used. It aims to make your applications portable, easy to
build, and easy to collaborate on.

Version: v1.2.0 (fba92ef) 8



Chapter 1: Introduction

Encourages service orientated architecture
Docker also encourages service orientated and microservices architectures.
Docker recommends that each container run a single application or process. This
promotes a distributed application model where an application or service is
represents by a series of inter-connected containers. This makes it very easy to
distribute, scale, debug and introspect your applications.

NOTE Although you don't need to build your applications this way if you don't
wish. You can easily run a multi-processes application inside a single container.

Docker components
Let's look at the core components that compose Docker:

• The Docker client and server
• Docker Images
• Registries
• Docker Containers

Docker client and server
Docker is a client-server application. The Docker client talks to the Docker server
or daemon, which, in turn, does all the work. Docker ships with a command
line client binary, docker, as well as a full RESTful API. You can run the Docker
daemon and client on the same host or connect your local Docker client to a remote
daemon running on another host. You can see Docker's architecture depicted here:

Version: v1.2.0 (fba92ef) 9

http://martinfowler.com/articles/microservices.html
http://docs.docker.com/reference/api/docker_remote_api/


Chapter 1: Introduction

Figure 1.1: Docker architecture

Version: v1.2.0 (fba92ef) 10



Chapter 1: Introduction

Docker images
Images are the building blocks of the Docker world. You launch your containers
from images. Images are the "build" part of Docker's life cycle. They are a lay-
ered format, using Union file systems, that are built step-by-step using a series of
instructions. For example:

• Add a file.
• Run a command.
• Open a port.

You can consider images to be the "source code" for your containers. They are
highly portable and can be shared, stored, and updated. In the book, we'll learn
how to use existing images as well as build our own images.

Registries
Docker stores the images you build in registries. There are two types of registries:
public and private. Docker, Inc., operates the public registry for images, called
the Docker Hub. You can create an account on the Docker Hub and use it to share
and store your own images.
The Docker Hub also contains, at last count, over 10,000 images that other people
have built and shared. Want a Docker image for an Nginx web server, the Asterisk
open source PABX system, or a MySQL database? All of these are available, along
with a whole lot more.
You can also store images that you want to keep private on the Docker Hub. These
images might include source code or other proprietary information you want to
keep secure or only share with other members of your team or organization.
You can also run your own private registry, and we'll show you how to do that in
Chapter 4. This allows you to store images behind your firewall, which may be a
requirement for some organizations.

Version: v1.2.0 (fba92ef) 11

http://hub.docker.com
https://hub.docker.com/account/signup/
https://hub.docker.com/search?q=nginx
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=mysql


Chapter 1: Introduction

Containers
Docker helps you build and deploy containers inside of which you can package
your applications and services. As we've just learnt, containers are launched from
images and can contain one or more running processes. You can think about
images as the building or packing aspect of Docker and the containers as the
running or execution aspect of Docker.
A Docker container is:

• An image format.
• A set of standard operations.
• An execution environment.

Docker borrows the concept of the standard shipping container, used to transport
goods globally, as a model for its containers. But instead of shipping goods, Docker
containers ship software.
Each container contains a software image -- its 'cargo' -- and, like its physical
counterpart, allows a set of operations to be performed. For example, it can be
created, started, stopped, restarted, and destroyed.
Like a shipping container, Docker doesn't care about the contents of the container
when performing these actions; for example, whether a container is a web server,
a database, or an application server. Each container is loaded the same as any
other container.
Docker also doesn't care where you ship your container: you can build on your
laptop, upload to a registry, then download to a physical or virtual server, test,
deploy to a cluster of a dozen Amazon EC2 hosts, and run. Like a normal shipping
container, it is interchangeable, stackable, portable, and as generic as possible.
With Docker, we can quickly build an application server, a message bus, a utility
appliance, a CI test bed for an application, or one of a thousand other possible ap-
plications, services, and tools. It can build local, self-contained test environments
or replicate complex application stacks for production or development purposes.
The possible use cases are endless.

Version: v1.2.0 (fba92ef) 12



Chapter 1: Introduction

What can you use Docker for?
So why should you care about Docker or containers in general? We've discussed
briefly the isolation that containers provide; as a result, they make excellent sand-
boxes for a variety of testing purposes. Additionally, because of their 'standard'
nature, they also make excellent building blocks for services. Some of the exam-
ples of Docker running out in the wild include:

• Helping make your local development and build workflow faster, more ef-
ficient, and more lightweight. Local developers can build, run, and share
Docker containers. Containers can be built in development and promoted to
testing environments and, in turn, to production.

• Running stand-alone services and applications consistently across multiple
environments, a concept especially useful in service-oriented architectures
and deployments that rely heavily on micro-services.

• Using Docker to create isolated instances to run tests like, for example, those
launched by a Continuous Integration (CI) suite like Jenkins CI.

• Building and testing complex applications and architectures on a local host
prior to deployment into a production environment.

• Building a multi-user Platform-as-a-Service (PAAS) infrastructure.
• Providing lightweight stand-alone sandbox environments for developing,
testing, and teaching technologies, such as the Unix shell or a programming
language.

• Software as a Service applications; for example, Memcached as a service.
• Highly performant, hyperscale deployments of hosts.

You can see a list of some of the early projects built on and around the Docker
ecosystem here.

Docker with configuration management
Since Docker was announced, there have been a lot of discussions about where
Docker fits with configuration management tools like Puppet and Chef. Docker

Version: v1.2.0 (fba92ef) 13

http://www.memcachedasaservice.com/
http://blog.docker.com/2013/07/docker-projects-from-the-docker-community/


Chapter 1: Introduction

includes an image-building and image-management solution. One of the drivers
for modern configuration management tools was the response to the "golden im-
age" model. With golden images, you end up with massive and unmanageable
image sprawl: large numbers of (deployed) complex images in varying states of
versioning. You create randomness and exacerbate entropy in your environment
as your image use grows. Images also tend to be heavy and unwieldy. This often
forces manual change or layers of deviation and unmanaged configuration on top
of images, because the underlying images lack appropriate flexibility.
Compared to traditional image models, Docker is a lot more lightweight: images
are layered, and you can quickly iterate on them. There is some legitimate argu-
ment to suggest that these attributes alleviate many of the management problems
traditional images present. It is not immediately clear, though, that this allevia-
tion represents the ability to totally replace or supplant configurationmanagement
tools. There is amazing power and control to be gained through the idempotence
and introspection that configuration management tools can provide. Docker it-
self still needs to be installed, managed, and deployed on a host. That host also
needs to be managed. In turn, Docker containers may need be to be orchestrated,
managed, and deployed, often in conjunction with external services and tools,
which are all capabilities that configuration management tools are excellent in
providing.
It is also apparent that Docker represents (or, perhaps more accurately, encour-
ages) some different characteristics and architecture for hosts, applications, and
services: they can be short-lived, immutable, disposable, and service-oriented.
These behaviors do not lend themselves or resonate strongly with the need for
configuration management tools. With these behaviors, you are rarely concerned
with long-term management of state, entropy is less of a concern because contain-
ers rarely live long enough for it to be, and the recreation of state may often be
cheaper than the remediation of state.
Not all infrastructure can be represented with these behaviors, however. Docker's
ideal workloads will likely exist alongside more traditional infrastructure deploy-
ment for a little while. The long-lived host, perhaps also the host that needs to
run on physical hardware, still has a role in many organizations. As a result of
these diverse management needs, combined with the need to manage Docker it-
self, both Docker and configuration management tools are likely to be deployed

Version: v1.2.0 (fba92ef) 14

https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball
https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball


Chapter 1: Introduction

in the majority of organizations.

Docker's technical components
Docker can be run on any x64 host running a modern Linux kernel; we recommend
kernel version 3.8 and later. It has low overhead and can be used on servers,
desktops, or laptops. It includes:

• A native Linux container format that Docker calls libcontainer, as well as
the popular container platform, lxc. The libcontainer format is now the
default format.

• Linux kernel namespaces, which provide isolation for filesystems, processes,
and networks.

• Filesystem isolation: each container is its own root filesystem.
• Process isolation: each container runs in its own process environment.
• Network isolation: separate virtual interfaces and IP addressing between
containers.

• Resource isolation and grouping: resources like CPU and memory are allo-
cated individually to each Docker container using the cgroups, or control
groups, kernel feature.

• Copy-on-write: filesystems are created with copy-on-write, meaning they
are layered and fast and require limited disk usage.

• Logging: STDOUT, STDERR and STDIN from the container are collected, logged,
and available for analysis or trouble-shooting.

• Interactive shell: You can create a pseudo-tty and attach to STDIN to provide
an interactive shell to your container.

What's in the book?
In this book, we walk you through installing, deploying, managing, and extending
Docker. We do that by first introducing you to the basics of Docker and its com-

Version: v1.2.0 (fba92ef) 15

http://lxc.sourceforge.net/
http://lwn.net/Articles/531114/
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Copy-on-write


Chapter 1: Introduction

ponents. Then we start to use Docker to build containers and services to perform
a variety of tasks.
We take you through the development life cycle, from testing to production, and
see where Docker fits in and how it can make your life easier. We make use of
Docker to build test environments for new projects, demonstrate how to integrate
Docker with continuous integration workflow, and then how to build application
services and platforms. Finally, we show you how to use Docker's API and how to
extend Docker yourself.
We teach you how to:

• Install Docker.
• Take your first steps with a Docker container.
• Build Docker images.
• Manage and share Docker images.
• Run and manage more complex Docker containers.
• Deploy Docker containers as part of your testing pipeline.
• Build multi-container applications and environments.
• Introduce the basics of Docker orchestration with Fig.
• Explore the Docker API.
• Getting Help and Extending Docker.

It is recommended that you read through every chapter. Each chapter builds on
your Docker knowledge and introduce new features and functionality. By the end
of the book you should have a solid understanding of how to work with Docker
to build standard containers and deploy applications, test environments, and stan-
dalone services.

Docker resources
• Docker homepage
• Docker Hub
• Docker blog

Version: v1.2.0 (fba92ef) 16

http://www.docker.com/
http://hub.docker.com
http://blog.docker.com/


Chapter 1: Introduction

• Docker documentation
• Docker Getting Started Guide
• Docker code on GitHub
• Docker Forge - collection of Docker tools, utilities, and services.
• Docker mailing list
• Docker on IRC: irc.freenode.net and channel #docker
• Docker on Twitter
• Get Docker help on StackOverflow
• Docker.com

In addition to these resources in Chapter 9 you'll get a detailed explanation of
where and how to get help with Docker.

Version: v1.2.0 (fba92ef) 17

http://docs.docker.com/
http://www.docker.com/tryit/
https://github.com/docker/docker
https://github.com/dockerforge
https://groups.google.com/forum/#!forum/docker-user
http://twitter.com/docker
http://stackoverflow.com/search?q=docker
http://www.docker.com/


Chapter 2

Installing Docker

Installing Docker is quick and easy. Docker is currently supported on a wide
variety of Linux platforms, including shipping as part of Ubuntu and Red Hat En-
terprise Linux (RHEL). Also supported are various derivative and related distribu-
tions like Debian, CentOS, Fedora, Oracle Linux, and many others. Using a virtual
environment, you can install and run Docker on OS X and Microsoft Windows.
Currently, the Docker team recommends deploying Docker on Ubuntu or RHEL
hosts and makes available packages that you can use to do this. In this chapter,
I'm going to show you how to install Docker in four different but complementary
environments:

• On a host running Ubuntu.
• On a host running Red Hat Enterprise Linux or derivative distribution.
• On OS X using Boot2Docker.
• On Microsoft Windows using Boot2Docker.

TIP Boot2Docker is a tiny virtual machine shipped with a wrapper script to
manage it. The virtual machine runs the daemon and provides a local Docker
daemon on OS X and Microsoft Windows. The Docker client binary, docker, can
be installed natively on these platforms and connected to the Docker daemon

18

http://boot2docker.io
http://boot2docker.io


Chapter 2: Installing Docker

running in the virtual machine.

Docker runs on a number of other platforms, including Debian, SuSE, Arch Linux,
CentOS, and Gentoo. It's also supported on several Cloud platforms including
Amazon EC2, Rackspace Cloud, and Google Compute Engine.
I've chosen these four methods because they represent the environments that are
most commonly used in the Docker community. For example, your developers
and sysadmins may wish to start with building Docker containers on their OS X or
Windows workstations using Boot2Docker and then promote these containers to
a testing, staging, or production environment running one of the other supported
platforms.
I recommend you step through at least the Ubuntu or the RHEL installation to get
an idea of Docker's prerequisites and an understanding of how to install it.

TIP As with all installation processes, I also recommend you look at using tools
like Puppet or Chef to install Docker rather than using a manual process. For
example, you can find a Puppet module to install Docker here and a Chef cookbook
here.

Requirements
For all of these installation types, Docker has some basic prerequisites. To use
Docker you must:

• Be running a 64-bit architecture (currently x86_64 and amd64 only). 32-bit
is NOT currently supported.

• Be running a Linux 3.8 or later kernel. Some earlier kernels from 2.6.x and
later will run Docker successfully. Your results will greatly vary, though,
and if you need support you will often be asked to run on a more recent

Version: v1.2.0 (fba92ef) 19

http://docs.docker.com/installation/openSUSE/
http://docs.docker.com/installation/archlinux/
http://docs.docker.com/installation/gentoolinux/
http://docs.docker.com/installation/amazon/
http://docs.docker.com/installation/rackspace/
http://docs.docker.com/installation/google/
http://www.puppetlabs.com
http://www.opscode.com
http://docs.docker.com/use/puppet/
http://community.opscode.com/cookbooks/docker


Chapter 2: Installing Docker

kernel.
• The kernel must support an appropriate storage driver. For example,

– Device Mapper
– AUFS
– vfs.
– btrfs
– The default storage driver is usually Device Mapper.

• cgroups and namespaces kernel features must be supported and enabled.

Installing on Ubuntu
Installing Docker on Ubuntu is currently officially supported on a selection of
Ubuntu releases:

• Ubuntu Trusty 14.04 (LTS) (64-bit)
• Ubuntu Precise 12.04 (LTS) (64-bit)
• Ubuntu Raring 13.04 (64-bit)
• Ubuntu Saucy 13.10 (64-bit)

NOTE This is not to say Docker won't work on other Ubuntu (or Debian) ver-
sions that have appropriate kernel levels and the additional required support.
They just aren't officially supported, so any bugs you encounter may result in
a WONTFIX.

To begin our installation, we first need to confirm we've got all the required pre-
requisites. I've created a brand new Ubuntu 12.04 LTS 64-bit host on which to
install Docker. We're going to call that host darknight.example.com.

Version: v1.2.0 (fba92ef) 20

http://en.wikipedia.org/wiki/Device_mapper
http://en.wikipedia.org/wiki/Aufs
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Btrfs
http://en.wikipedia.org/wiki/Cgroups
http://blog.dotcloud.com/under-the-hood-linux-kernels-on-dotcloud-part


Chapter 2: Installing Docker

Checking for prerequisites
Docker has a small but necessary list of prerequisites required to install and run
on Ubuntu hosts.

Kernel

First, let's confirm we've got a sufficiently recent Linux kernel. We can do this
using the uname command.

Listing 2.1: Checking for the Linux kernel version on Ubuntu
$ uname -a
Linux darknight.example.com 3.8.0-23-generic #34~precise1-Ubuntu ↩
SMP Wed May 29 21:12:31 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

We can see that we've got a 3.8.0 x86_64 kernel installed. This is the default for
Ubuntu 12.04.3 and later (and also for Ubuntu 13.04 Raring).
If, however, we're using an earlier release of Ubuntu 12.04 Precise, we may have
a 3.2 kernel. We can easily upgrade our Ubuntu 12.04 to the later kernel; for
example, at the time of writing, the 3.8 kernel was available to install via apt-↩
get:

Listing 2.2: Installing a 3.8 kernel on Ubuntu Precise
$ sudo apt-get update
$ sudo apt-get install linux-headers-3.8.0-27-generic linux-image↩
-3.8.0-27-generic linux-headers-3.8.0-27

NOTE Throughout this book we're going to use sudo to provide the required
root privileges.

We can then update the Grub boot loader to load our new kernel.

Version: v1.2.0 (fba92ef) 21



Chapter 2: Installing Docker

Listing 2.3: Updating the boot loader on Ubuntu Precise
$ sudo update-grub

After installation, we'll need to reboot our host to enable the new 3.8 kernel.

Listing 2.4: Reboot the Ubuntu host
$ sudo reboot

After the reboot, we can then check that our host is running the right version using
the same uname -a command we used above.

NOTE Remember: If installing on Ubuntu Raring, you won't need to update
the kernel, as it already comes with a 3.8 kernel.

Checking for Device Mapper

We're going to make use of the Device Mapper storage driver. The Device Mapper
framework has been in the Linux kernel since 2.6.9 and provides a method for
mapping block devices into higher-level virtual devices. It supports a concept
called 'thin-provisioning' to store multiple virtual devices, the layers in our Docker
images, on a filesystem. Hence, it is perfect for providing the storage that Docker
requires.
Device Mapper should be installed on any Ubuntu 12.04 or later hosts, but we can
confirm it is installed like so:

Listing 2.5: Checking for Device Mapper
$ ls -l /sys/class/misc/device-mapper
lrwxrwxrwx 1 root root 0 Oct 5 18:50 /sys/class/misc/device-↩
mapper -> ../../devices/virtual/misc/device-mapper

We could also check in /proc/devices for a device-mapper entry.

Version: v1.2.0 (fba92ef) 22

https://github.com/mirrors/linux/blob/master/Documentation/device-mapper/thin-provisioning.txt


Chapter 2: Installing Docker

Listing 2.6: Checking for Device Mapper in proc on Ubuntu
$ sudo grep device-mapper /proc/devices

If neither is present, we can also try to load the dm_mod module.

Listing 2.7: Loading the Device Mapper module
$ sudo modprobe dm_mod

Both cgroups and namespaces have also been longtime Linux kernel residents since
the 2.6 version. Both are generally well supported and relatively bug free since
about the 2.6.38 release of the kernel.

Installing Docker
Now we've got everything we need to add Docker to our host. To install Docker,
we're going to use the Docker team's DEB packages.
First, we add the Docker APT repository. You may be prompted to confirm that
you wish to add the repository and have the repositories GPG automatically added
to your host.

Listing 2.8: Adding the Docker APT repository
$ sudo sh -c "echo deb https://get.docker.io/ubuntu docker main >↩

/etc/apt/sources.list.d/docker.list"

First, we'll need to ensure the curl command is installed.

Listing 2.9: Testing for curl installation
$ whereis curl
curl: /usr/bin/curl /usr/bin/X11/curl /usr/share/man/man1/curl.1.↩
gz

Then install curl if it's not found.

Version: v1.2.0 (fba92ef) 23



Chapter 2: Installing Docker

Listing 2.10: Install curl if needed
$ sudo apt-get -y install curl

Next, we need to add the Docker repository's GPG key.

Listing 2.11: Adding the Docker repository GPG key
$ curl -s https://get.docker.io/gpg | sudo apt-key add -

Now, we update our APT sources.

Listing 2.12: Updating APT sources
$ sudo apt-get update

We can now install the Docker package itself.

Listing 2.13: Installing the Docker packages on Ubuntu
$ sudo apt-get install lxc-docker

This will install Docker and a number of additional required packages.
We should now be able to confirm that Docker is installed and running using the
docker info command.

Listing 2.14: Checking Docker is installed on Ubuntu
$ sudo docker info
Containers: 0
Images: 0
. . .

Docker and UFW
If you use the UFW, or Uncomplicated Firewall, on Ubuntu, then you'll need to
make a small change to get it to work with Docker. Docker uses a network bridge

Version: v1.2.0 (fba92ef) 24

https://help.ubuntu.com/community/UFW


Chapter 2: Installing Docker

to manage the networking on your containers. By default, UFW drops all for-
warded packets. You'll need to enable forwarding in UFW for Docker to function
correctly. We can do this by editing the /etc/default/ufw file. Inside this file,
change:

Listing 2.15: Old UFW forwarding policy
DEFAULT_FORWARD_POLICY="DROP"

To:

Listing 2.16: New UFW forwarding policy
DEFAULT_FORWARD_POLICY="ACCEPT"

Save the update and reload UFW.

Listing 2.17: Reload the UFW firewall
$ sudo ufw reload

Installing on Red Hat and family
Installing Docker on Red Hat Enterprise Linux (or CentOS or Fedora) is currently
only supported on a small selection of releases:

• Red Hat Enterprise Linux (and CentOS) 6 and later (64-bit)
• Fedora Core 19 and later (64-bit)

TIP Docker is shipped by Red Hat as a native package on Red Hat Enterprise
Linux 7 and later. Additionally, Red Hat Enterprise Linux 7 is the only release on
which Red Hat officially supports Docker.

Version: v1.2.0 (fba92ef) 25



Chapter 2: Installing Docker

Checking for prerequisites
Docker has a small but necessary list of prerequisites required to install and run
on Red Hat and the Red Hat-family of distributions.

Kernel

We need to confirm that we have a 3.8 or later kernel version. We can do this
using the uname command like so:

Listing 2.18: Checking the Red Hat or Fedora kernel
$ uname -a
Linux darknight.example.com 3.10.9-200.fc19.x86_64 #1 SMP Wed Aug↩

21 19:27:58 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

All of the currently supported Red Hat and Red Hat-family platforms should have
a kernel that supports Docker.

Checking for Device Mapper

We're going to use the Device Mapper storage driver to provide Docker's storage
capabilities. Device Mapper should be installed on any Red Hat Enterprise Linux,
CentOS 6+, or Fedora Core 19 or later hosts, but we can confirm it is installed
like so:

Listing 2.19: Checking for Device Mapper
$ ls -l /sys/class/misc/device-mapper
lrwxrwxrwx 1 root root 0 Oct 5 18:50 /sys/class/misc/device-↩
mapper -> ../../devices/virtual/misc/device-mapper

We could also check in /proc/devices for a device-mapper entry.

Listing 2.20: Checking for Device Mapper in proc on Red Hat
$ sudo grep device-mapper /proc/devices

Version: v1.2.0 (fba92ef) 26



Chapter 2: Installing Docker

If neither is present, we can also try to install the device-mapper package.

Listing 2.21: Installing the Device Mapper package
$ sudo yum install -y device-mapper

Then we can load the dm_mod kernel module.

Listing 2.22: Loading the Device Mapper module
$ sudo modprobe dm_mod

We should now be able to find the /sys/class/misc/device-mapper entry.

Installing Docker
The process for installing differs slightly between Red Hat variants. On Red Hat
Enterprise Linux 6 and CentOS 6, we will need to add the EPEL package reposi-
tories first. On Fedora, we do not need the EPEL repositories enabled. There are
also some package-naming differences between platforms and versions.

Installing on Red Hat Enterprise Linux 6 and CentOS 6

For Red Hat Enterprise Linux 6 and CentOS 6, we install EPEL by adding the
following RPM.

Listing 2.23: Installing EPEL on Red Hat Enterprise Linux 6 and CentOS 6
$ sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386↩
/epel-release-6-8.noarch.rpm

Now we should be able to install the Docker package.

Listing 2.24: Installing the Docker package on Red Hat Enterprise Linux 6 and CentOS 6
$ sudo yum -y install lxc-docker

Version: v1.2.0 (fba92ef) 27



Chapter 2: Installing Docker

Installing on Red Hat Enterprise Linux 7

With Red Hat Enterprise Linux 7 and later you can install Docker using these
instructions.

Listing 2.25: Installing Docker on RHEL 7
$ sudo subscription-manager repos --enable=rhel-7-server-extras-↩
rpms

$ sudo yum install -y docker

You'll need to be a Red Hat customer with an appropriate RHEL Server subscrip-
tion entitlement to access the Red Hat Docker packages and documentation.

Installing on Fedora

There have been some package name changes across versions of Fedora. For Fe-
dora 19, we need to install the docker-io package.

Listing 2.26: Installing the Docker package on Fedora 19
$ sudo yum -y install docker-io

On Fedora 20 and later, the package has been renamed to docker.

Listing 2.27: Installing the Docker package on Fedora 20 and later
$ sudo yum -y install docker

Starting the Docker daemon on the Red Hat family
Once the package is installed, we can start the Docker daemon. On Red Hat En-
terprise Linux 6 and CentOS 6 you can use.

Listing 2.28: Starting the Docker daemon on Red Hat 6
$ sudo service docker start

Version: v1.2.0 (fba92ef) 28

https://access.redhat.com/articles/881893
https://access.redhat.com/articles/881893


Chapter 2: Installing Docker

If we want Docker to start at boot we should also:

Listing 2.29: Ensuring the Docker daemon starts at boot on Red Hat 6
$ sudo service docker enable

On Red Hat Enterprise Linux 7 and Fedora.

Listing 2.30: Starting the Docker daemon on Red Hat 7
$ sudo systemctl start docker

If we want Docker to start at boot we should also:

Listing 2.31: Ensuring the Docker daemon starts at boot on Red Hat 7
$ sudo systemctl enable docker

We should now be able to confirm Docker is installed and running using the
docker info command.

Listing 2.32: Checking Docker is installed on the Red Hat family
$ sudo docker info
Containers: 0
Images: 0
. . .

Boot2Docker installation on OS X
If you're using OS X, you can quickly get started with Docker using the
Boot2Docker tool. Boot2Docker is a tiny virtual machine with a supporting
command line tool that is installed on an OS X host and provides you with a
Docker environment.
Boot2Docker ships with a couple of prerequisites too:

• VirtualBox.
• The Docker client.

Version: v1.2.0 (fba92ef) 29

http://boot2docker.io


Chapter 2: Installing Docker

Installing Boot2Docker on OSX
To install Boot2Docker on OSX we need to download its installer from Git Hub.
You can find it here.
Let's grab the current release:

Listing 2.33: Downloading the Boot2Docker PKG file
$ wget https://github.com/boot2docker/osx-installer/releases/↩
download/v1.1.1/Boot2Docker-1.1.1.pkg

Launch the downloaded installer and follow the instructions to install
Boot2Docker.

Figure 2.1: Installing Boot2Docker on OSX

Version: v1.2.0 (fba92ef) 30

https://github.com/boot2docker/osx-installer/releases


Chapter 2: Installing Docker

Setting up Boot2Docker on OSX
Now that we've got all the pieces of Boot2Docker and its prerequisites installed,
we can set it up and test it. To set it up, we run the Boot2Docker application.
Navigate to your OS X Application folder and click on the Boot2Docker icon to
initialize and launch the Boot2Docker virtual machine.

Figure 2.2: Running Boot2Docker on OSX

Version: v1.2.0 (fba92ef) 31



Chapter 2: Installing Docker

Testing Boot2Docker
We can now test that our Boot2Docker installation is working by trying to con-
nect our local client to the Docker daemon running on the Boot2Docker virtual
machine.

Listing 2.34: Testing Boot2Docker on OSX
$ docker info
Containers: 0
Images: 0
Driver: aufs
Root Dir: /mnt/sda1/var/lib/docker/aufs
Dirs: 0
. . .
Kernel Version: 3.13.3-tinycore64

And presto! We have Docker running locally on our OS X host.

Boot2Docker installation on Windows
If you're using Microsoft Windows, you can quickly get started with Docker using
the Boot2Docker tool. Boot2Docker is a tiny virtual machine with a supporting
command line tool that is installed on a Windows host and provides you with a
Docker environment.
Boot2Docker ships with a couple of prerequisites too:

• VirtualBox.
• The Docker client.

Installing Boot2Docker on Windows
To install Boot2Docker on Windows we need to download its installer from Git
Hub. You can find it here.

Version: v1.2.0 (fba92ef) 32

http://boot2docker.io
https://github.com/boot2docker/windows-installer/releases


Chapter 2: Installing Docker

Let's grab the current release:

Listing 2.35: Downloading the Boot2Docker .EXE file
$ wget https://github.com/boot2docker/windows-installer/releases/↩
download/v1.1.1/docker-install.exe

Launch the downloaded installer and follow the instructions to install
Boot2Docker.

Figure 2.3: Installing Boot2Docker on Windows

Setting up Boot2Docker on Windows
Once Boot2Docker is installed you can run the Boot2Docker Start script from the
Desktop or Program Files > Boot2Docker for Windows.

Version: v1.2.0 (fba92ef) 33



Chapter 2: Installing Docker

Figure 2.4: Running Boot2Docker on Windows

Testing Boot2Docker
We can now test that our Boot2Docker installation is working by trying to con-
nect our local client to the Docker daemon running on the Boot2Docker virtual
machine.

Version: v1.2.0 (fba92ef) 34



Chapter 2: Installing Docker

Listing 2.36: Testing Boot2Docker on Windows
$ docker info
Containers: 0
Images: 0
Driver: aufs
Root Dir: /mnt/sda1/var/lib/docker/aufs
Dirs: 0
. . .
Kernel Version: 3.13.3-tinycore64

And presto! We have Docker running locally on our Windows host.

Using Boot2Docker with this book
If you are following the examples in this book you will sometimes be asked to
connect to a container via its network interface or a network port. Often this will
be on the localhost or IP address of the Docker server. As Boot2Docker is a local
virtual machine it has its own network interface and IP address. You will need to
connect to that address rather than your localhost or host's own IP address.
To find the Boot2Docker IP address you can check the value of the DOCKER_HOST
environment variable. You'll be prompted to set this variable when you start or
install Boot2Docker with a message similar to:

Listing 2.37: Boot2Docker launch message
$ boot2docker start
2014/07/31 05:59:40 Waiting for VM to be started...
2014/07/31 05:59:46 Started.
2014/07/31 05:59:46 To connect the Docker client to the Docker ↩
daemon, please set:

2014/07/31 05:59:46 export DOCKER_HOST=tcp↩
://192.168.59.103:2375

Or you can find the IP address by running the boot2docker ip command.

Version: v1.2.0 (fba92ef) 35



Chapter 2: Installing Docker

Listing 2.38: Getting the Boot2Docker IP address
$ boot2docker ip
The VM's Host only interface IP address is: 192.168.59.103

So with an example asking you to connect to a container on the localhost↩
, for example using the curl command, you would replace localhost with the IP
address provided.
So that:

Listing 2.39: Initial curl command
$ curl localhost:49155

Would become:

Listing 2.40: Updated curl command
$ curl 192.168.59.103:49155

Additionally, and importantly, any examples that use volumes or the docker run
command with the -v flag to mount a local directory into a Docker container will
not work with Boot2Docker. You can't mount a local directory on your OS X or
Windows host into the Docker host running in the Boot2Docker virtual machine
because they don't share a file system. Hence the current Boot2Docker release does
not support the use of volumes. If you want to use any examples with volumes,
such as those in Chapters 5 and 6, you will need to be running Docker on a Linux-
based host. This is also true if running Docker in any virtual machine on Windows
or OS X.

NOTE There is also a great blog post from Chris Jones that talks about these
issues and suggests some workarounds.

Version: v1.2.0 (fba92ef) 36

http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide


Chapter 2: Installing Docker

Docker installation script
There is also an alternative method available to install Docker on an appropriate
host using a remote installation script. To use this script we need to curl it from
the get.docker.io website.

NOTE The script currently only supports Ubuntu, Fedora, Debian, and Gentoo
installation. It may be updated shortly to include other distributions.

First, we'll need to ensure the curl command is installed.

Listing 2.41: Testing for curl
$ whereis curl
curl: /usr/bin/curl /usr/bin/X11/curl /usr/share/man/man1/curl.1.↩
gz

We can use apt-get to install curl if necessary.

Listing 2.42: Installing curl on Ubuntu
$ sudo apt-get -y install curl

Or we can use yum on Fedora.

Listing 2.43: Installing curl on Fedora
$ sudo yum -y install curl

Now we can use the script to install Docker.

Listing 2.44: Installing Docker from the installation script
$ curl https://get.docker.io/ | sudo sh

This will ensure that the required dependencies are installed and check that our
kernel is an appropriate version and that it supports an appropriate storage driver.

Version: v1.2.0 (fba92ef) 37

https://get.docker.io


Chapter 2: Installing Docker

It will then install Docker and start the Docker daemon.

Binary installation
If we don't wish to use any of the package-based installation methods, we can
download the latest binary version of Docker.

Listing 2.45: Downloading the Docker binary
$ wget http://get.docker.io/builds/Linux/x86_64/docker-latest.tgz

I recommend not taking this approach, as it reduces the maintainability of your
Docker installation. Using packages is simpler and easier to manage, especially if
using automation or configuration management tools.

The Docker daemon
After we've installed Docker, we need to confirm that the Docker daemon is run-
ning. Docker runs as a root-privileged daemon process to allow it to handle op-
erations that can't be executed by normal users (e.g., mounting filesystems). The
docker binary runs as a client of this daemon and also requires root privileges to
run.
The Docker daemon should be started by default when the Docker package is
installed. By default, the daemon listens on a Unix socket at /var/run/docker.↩
sock for incoming Docker requests. If a group named docker exists on our system,
Docker will apply ownership of the socket to that group. Hence, any user that
belongs to the docker group can run Docker without needing to use the sudo
command.

WARNING Remember that although the docker group makes life easier, it
is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications who absolutely need it.

Version: v1.2.0 (fba92ef) 38



Chapter 2: Installing Docker

Configuring the Docker daemon
We can change how the Docker daemon binds by adjusting the -H flag when the
daemon is run.
We can use the -H flag to specify different interface and port configuration; for
example, binding to the network:

Listing 2.46: Changing Docker daemon networking
$ sudo /usr/bin/docker -d -H tcp://0.0.0.0:2375

This would bind the Docker daemon to all interfaces on the host. Docker isn't
automatically aware of networking changes on the client side. We will need to
specify the -H option to point the docker client at the server; for example, docker↩
-H :4200 would be required if we had changed the port to 4200. Or, if we don't
want to specify the -H on each client call, Docker will also honor the content of
the DOCKER_HOST environment variable..

Listing 2.47: Using the DOCKER_HOST environment variable
$ export DOCKER_HOST="tcp://0.0.0.0:2375"

WARNING By default, Docker client-server communication is not authenti-
cated. This means that if you bind Docker to an exposed network interface, anyone
can connect to the daemon. There is, however, some TLS authentication available
in Docker 0.9 and later. You'll see how to enable it when we look at the Docker
API in Chapter 8.

We can also specify an alternative Unix socket path with the -H flag; for example,
to use unix://home/docker/docker.sock:

Version: v1.2.0 (fba92ef) 39



Chapter 2: Installing Docker

Listing 2.48: Binding the Docker daemon to a different socket
$ sudo /usr/bin/docker -d -H unix://home/docker/docker.sock

Or we can specify multiple bindings like so:

Listing 2.49: Binding the Docker daemon to multiple places
$ sudo /usr/bin/docker -d -H tcp://0.0.0.0:2375 -H unix://home/↩
docker/docker.sock

We can also increase the verbosity of the Docker daemon by prefixing the daemon
start command with DEBUG=1. Currently, Docker has limited log output. Indeed, if
we are running on Ubuntu using Upstart, then generally only the output generated
by the daemon is in /var/log/upstart/docker.log.

Listing 2.50: Turning on Docker daemon debug
DEBUG=1 /usr/bin/docker -d

If we want to make these changes permanent, we'll need to edit the various startup
configurations. On Ubuntu, this is done by editing the /etc/default/docker file
and changing the DOCKER_OPTS variable.
On Fedora and Red Hat distributions, this can be configured by editing the /usr↩
/lib/systemd/system/docker.service file and adjusting the ExecStart line.

NOTE On other platforms, you can manage and update the Docker daemon's
starting configuration via the appropriate init mechanism.

Checking that the Docker daemon is running
On Ubuntu, if Docker has been installed via package, we can check if the daemon
is running with the Upstart status command:

Version: v1.2.0 (fba92ef) 40



Chapter 2: Installing Docker

Listing 2.51: Checking the status of the Docker daemon
$ sudo status docker
docker start/running, process 18147

We can then start or stop the Docker daemon with the Upstart start and stop
commands, respectively.

Listing 2.52: Starting and stopping Docker with Upstart
$ sudo stop docker
docker stop/waiting
$ sudo start docker
docker start/running, process 18192

On Red Hat and Fedora, we can do similarly using the service shortcuts.

Listing 2.53: Starting and stopping Docker on Red Hat and Fedora
$ sudo service docker stop
Redirecting to /bin/systemctl stop docker.service
$ sudo service docker start
Redirecting to /bin/systemctl start docker.service

If the daemon isn't running, then the docker binary client will fail with an error
message similar to this:

Listing 2.54: The Docker daemon isn't running
2014/05/18 20:08:32 Cannot connect to the Docker daemon. Is '↩
docker -d' running on this host?

NOTE Prior to version 0.4.0 of Docker, the docker binary had a stand-alone
mode, meaning it would run without the Docker daemon running. This mode has
now been deprecated.

Version: v1.2.0 (fba92ef) 41



Chapter 2: Installing Docker

Upgrading Docker
After you've installed Docker, it is also easy to upgrade it when required. If you
installed Docker using native packages via apt-get or yum, then you can also use
these channels to upgrade it.
For example, run the apt-get update command and then install the new version
of Docker.

Listing 2.55: Upgrade docker
$ sudo apt-get update
$ sudo apt-get install lxc-docker

Docker user interfaces
You can also potentially use a graphical user interface to manage Docker once
you've got it installed. Currently, there are a small number of Docker user inter-
faces and web consoles available in various states of development, including:

• Shipyard - Shipyard gives you the ability to manage Docker resources, includ-
ing containers, images, hosts, and more from a single management interface.
It's open source, and the code is available here.

• DockerUI - DockerUI is a web interface that allows you to interact with the
Docker Remote API. It's written in JavaScript using the AngularJS frame-
work.

• maDocker - A Web UI written in NodeJS and Backbone (in early stages of
development).

Summary
In this chapter, we've seen how to install Docker on a variety of platforms. We've
also seen how to manage the Docker daemon.

Version: v1.2.0 (fba92ef) 42

http://shipyard-project.com/
https://github.com/ehazlett/shipyard
https://github.com/crosbymichael/dockerui
https://github.com/izifortune/maDocker


Chapter 2: Installing Docker

In the next chapter, we're going to start using Docker. We'll begin with container
basics to give you an introduction to basic Docker operations. If you're all set up
and ready to go then jump onto Chapter 3.

Version: v1.2.0 (fba92ef) 43



Chapter 3

Getting Started with Docker

In the last chapter, we saw how to install Docker and ensure the Docker daemon
is up and running. In this chapter we're going to see how to take our first steps
with Docker and work with our first container. This chapter will provide you with
the basics of how to interact with Docker.

Ensuring Docker is ready
We're going to start with checking that Docker is working correctly, and then
we're going to take a look at the basic Docker workflow: creating and managing
containers. We'll take a container through its typical lifecycle from creation to a
managed state and then stop and remove it.
Firstly, let's check that the docker binary exists and is functional:

44



Chapter 3: Getting Started with Docker

Listing 3.1: Checking the docker binary works
$ sudo docker info
Containers: 0
Images: 0
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Dirs: 144
Execution Driver: native-0.1
Kernel Version: 3.8.0-29-generic
Registry: [https://index.docker.io/v1/]

Here, we've passed the info command to the docker binary, which returns a list of
any containers, any images (the building blocks Docker uses to build containers),
the execution and storage drivers Docker is using, and its basic configuration.
As we've learnt in previous chapters, Docker has a client-server architecture. It
has a single binary, docker, that can act as both client and server. As a client, the
docker binary passes requests to the Docker daemon (e.g., asking it to return in-
formation about itself), and then processes those requests when they are returned.

Building our first container
Now let's try and launch our first container with Docker. We're going to use the
docker run command to create a container. The docker run command provides
all of the "launch" capabilities for Docker. We'll be using it a lot to create new
containers.

TIP You can find a full list of the available Docker commands here or by typing
docker help. You can also use the Docker man pages (e.g., man docker-run).

Version: v1.2.0 (fba92ef) 45

http://docs.docker.com/reference/commandline/cli/


Chapter 3: Getting Started with Docker

Listing 3.2: Creating our first container
$ sudo docker run -i -t ubuntu /bin/bash
Pulling repository ubuntu from https://index.docker.io/v1
Pulling image 8↩
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c ↩
(precise) from ubuntu

Pulling 8↩
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c ↩
metadata

Pulling 8↩
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c ↩
fs layer

Downloading 58337280/? (n/a)
Pulling image ↩
b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc↩
(quantal) from ubuntu

Pulling image 27cf784147099545 () from ubuntu
root@fcd78e1a3569:/#

Wow. A bunch of stuff happened here when we ran this command. Let's look at
each piece.

Listing 3.3: The docker run command
$ sudo docker run -i -t ubuntu /bin/bash

First, we told Docker to run a command using docker run. We passed it two
command line flags: -i and -t. The -i flag keeps STDIN open from the container,
even if we're not attached to it. This persistent standard input is one half of what
we need for an interactive shell. The -t flag is the other half and tells Docker
to assign a pseudo-tty to the container we're about to create. This provides us
with an interactive shell in the new container. This line is the base configuration
needed to create a container with which we plan to interact on the command line
rather than run as a daemonized service.

Version: v1.2.0 (fba92ef) 46



Chapter 3: Getting Started with Docker

TIP You can find a full list of the available Docker run flags here or by typing
docker help run. You can also use the Docker man pages (e.g., example man
docker-run.)

Next, we told Docker which image to use to create a container, in this case the
ubuntu image. The ubuntu image is a stock image, also known as a "base" image,
provided by Docker, Inc., on the Docker Hub registry. You can use base images
like the ubuntu base image (and the similar fedora, debian, centos, etc., images)
as the basis for building your own images on the operating system of your choice.
For now, we're just running the base image as the basis for our container and not
adding anything to it.
So what was happening in the background here? Firstly, Docker checked locally
for the ubuntu image. If it can't find the image on our local Docker host, it will
reach out to the Docker Hub registry run by Docker, Inc., and look for it there.
Once Docker had found the image, it downloaded the image and stored it on the
local host.
Docker then used this image to create a new container inside a filesystem. The
container has a network, IP address, and a bridge interface to talk to the local
host. Finally, we told Docker which command to run in our new container, in this
case launching a Bash shell with the /bin/bash command.
When the container had been created, Docker ran the /bin/bash command inside
it; the container's shell was presented to us like so:

Listing 3.4: Our first container's shell
root@f7cbdac22a02:/#

NOTE We're going to see in Chapter 4 how to build our own images to use as
the basis for containers.

Version: v1.2.0 (fba92ef) 47

http://docs.docker.com/reference/commandline/cli/#run
http://hub.docker.com
http://hub.docker.com


Chapter 3: Getting Started with Docker

Working with our first container
We are now logged into a new container, with the catchy ID of f7cbdac22a02, as
the root user. This is a fully fledged Ubuntu host, and we can do anything we like
in it. Let's explore it a bit, starting with asking for its hostname.

Listing 3.5: Checking the container's hostname
root@f7cbdac22a02:/# hostname
f7cbdac22a02

We can see that our container's hostname is the container ID. Let's have a look at
the /etc/hosts file too.

Listing 3.6: Checking the container's /etc/hosts
root@f7cbdac22a02:/# cat /etc/hosts
172.17.0.4 f7cbdac22a02
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Docker has also added a host entry for our container with its IP address. Let's also
check out its networking configuration.

Version: v1.2.0 (fba92ef) 48



Chapter 3: Getting Started with Docker

Listing 3.7: Checking the container's interfaces
root@f7cbdac22a02:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 1500 qdisc noqueue state ↩
UNKNOWN group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
899: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ↩
state UP group default qlen 1000

link/ether 16:50:3a:b6:f2:cc brd ff:ff:ff:ff:ff:ff
inet 172.17.0.4/16 scope global eth0
inet6 fe80::1450:3aff:feb6:f2cc/64 scope link

valid_lft forever preferred_lft forever

As we can see, we have the lo loopback interface and the standard eth0 network
interface with an IP address of 172.17.0.4, just like any other host. We can also
check its running processes.

Listing 3.8: Checking container's processes
root@f7cbdac22a02:/# ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME ↩
COMMAND

root 1 0.0 0.0 18156 1936 ? Ss May30 0:00 ↩
/bin/bash

root 21 0.0 0.0 15568 1100 ? R+ 02:38 0:00 ↩
ps -aux

Now, how about we install a package?

Listing 3.9: Installing a package in our first container
root@f7cbdac22a02:/# apt-get update && apt-get install vim

We'll now have Vim installed in our container.

Version: v1.2.0 (fba92ef) 49



Chapter 3: Getting Started with Docker

You can keep playing with the container for as long as you like. When you're done,
type exit, and you'll return to the command prompt of your Ubuntu host.
So what's happened to our container? Well, it has now stopped running. The
container only runs for as long as the command we specified, /bin/bash, is run-
ning. Once we exited the container, that command ended, and the container was
stopped.
The container still exists; we can show a list of current containers using the
docker ps -a command.

Figure 3.1: Listing Docker containers

By default, when we run just docker ps, we will only see the running containers.
When we specify the -a flag, the docker ps command will show us all containers,
both stopped and running.

TIP You can also use the docker ps command with the -l flag to show the last
container that was run, whether it is running or stopped.

We can see quite a bit of information about our container: its ID, the image used
to create it, the command it last ran, when it was created, and its exit status (in
our case, 0, because it was exited normally using the exit command). We can
also see that each container has a name.

NOTE There are three ways containers can be identified: a short UUID (like
f7cbdac22a02), a longer UUID (like f7cbdac22a02e03c9438c729345e54db9d20cf
a2ac1fc3494b6eb60872e74778), and a name (like gray_cat).

Version: v1.2.0 (fba92ef) 50



Chapter 3: Getting Started with Docker

Container naming
Docker will automatically generate a name at random for each container we create.
We can see that the container we've just created is called gray_cat. If we want to
specify a particular container name in place of the automatically generated name,
we can do so using the --name flag.

Listing 3.10: Naming a container
$ sudo docker run --name bob_the_container -i -t ubuntu /bin/bash
root@aa3f365f0f4e:/# exit

This would create a new container called bob_the_container. A valid container
name can contain the following characters: a to z, A to Z, the digits 0 to 9, the
underscore, period, and dash (or, expressed as a regular expression: [a-zA-Z0-↩
9_.-]).
We can use the container name in place of the container ID in most Docker com-
mands, as we'll see. Container names are useful to help us identify and build
logical connections between containers and applications. It's also much easier to
remember a specific container name (e.g., web or db) than a container ID or even
a random name. I recommend using container names to make managing your
containers easier.
Names are unique. If we try to create two containers with the same name, the
command will fail. We need to delete the previous container with the same name
before we can create a new one. We can do so with the docker rm command.

Starting a stopped container
So what to do with our now-stopped bob_the_container container? Well, if we
want, we can restart a stopped container like so:

Listing 3.11: Starting a stopped container
$ sudo docker start bob_the_container

Version: v1.2.0 (fba92ef) 51



Chapter 3: Getting Started with Docker

We could also refer to the container by its container ID instead.

Listing 3.12: Starting a stopped container by ID
$ sudo docker start aa3f365f0f4e

TIP We can also use the docker restart command.

Now if we run the docker ps command without the -a flag, we'll see our running
container.

Attaching to a container
Our container will restart with the same options we'd specified when we launched
it with the docker run command. So there is an interactive session waiting on
our running container. We can reattach to that session using the docker attach
command.

Listing 3.13: Attaching to a running container
$ sudo docker attach bob_the_container

or via its container ID:

Listing 3.14: Attaching to a running container via ID
$ sudo docker attach aa3f365f0f4e

and we'll be brought back to our container's Bash prompt:

TIP You might need to hit Enter to bring up the prompt

Version: v1.2.0 (fba92ef) 52



Chapter 3: Getting Started with Docker

Listing 3.15: Inside our re-attached container
root@aa3f365f0f4e:/#

If we exit this shell, our container will again be stopped.

Creating daemonized containers
In addition to these interactive containers, we can create longer-running contain-
ers. Daemonized containers don't have the interactive session we've just used and
are ideal for running applications and services. Most of the containers you're likely
to run will probably be daemonized. Let's start a daemonized container now.

Listing 3.16: Creating a long running container
$ sudo docker run --name daemon_dave -d ubuntu /bin/sh -c "while ↩
true; do echo hello world; sleep 1; done"

1333bb1a66af402138485fe44a335b382c09a887aa9f95cb9725e309ce5b7db3

Here, we've used the docker run command with the -d flag to tell Docker to
detach the container to the background.
We've also specified a while loop as our container command. Our loop will echo
hello world over and over again until the container is stopped or the process
stops.
With this combination of flags, you'll see that, instead of being attached to a shell
like our last container, the docker run command has instead returned a container
ID and returned us to our command prompt. Now if we run docker ps, we can
see a running container.

Listing 3.17: Viewing our running daemon_dave container
CONTAINER ID IMAGE COMMAND CREATED ↩
STATUS PORTS NAMES

1333bb1a66af ubuntu:14.04 /bin/sh -c 'while tr 32 secs ago Up 27↩
daemon_dave

Version: v1.2.0 (fba92ef) 53



Chapter 3: Getting Started with Docker

Seeing what's happening inside our container
We now have a daemonized container running our while loop; let's take a look
inside the container and see what's happening. To do so, we can use the docker↩
logs command. The docker logs command fetches the logs of a container.

Listing 3.18: Fetching the logs of our daemonized container
$ sudo docker logs daemon_dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world
. . .

Here we can see the results of our while loop echoing hello world to the logs.
Docker will output the last few log entries and then return. We can also monitor
the container's logs much like the tail -f binary operates using the -f flag..

Listing 3.19: Tailing the logs of our daemonized container
$ sudo docker logs -f daemon_dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world
. . .

TIP Use Ctrl-C to exit from the log tail.

Version: v1.2.0 (fba92ef) 54



Chapter 3: Getting Started with Docker

You can also tail a portion of the logs of a container, again much like the tail
command with the -f --lines flags. For example, you can get the last ten lines
of a log by using docker logs --tail 10 daemon_dave. You can also follow the
logs of a container without having to read the whole log file with docker logs↩
--tail 0 -f daemon_dave.
To make debugging a little easier, we can also add the -t flag to prefix our log
entries with timestamps.

Listing 3.20: Tailing the logs of our daemonized container
$ sudo docker logs -ft daemon_dave
[May 10 13:06:17.934] hello world
[May 10 13:06:18.935] hello world
[May 10 13:06:19.937] hello world
[May 10 13:06:20.939] hello world
[May 10 13:06:21.942] hello world
. . .

TIP Again, use Ctrl-C to exit from the log tail.

Inspecting the container's processes
In addition to the container's logs we can also inspect the processes running inside
the container. To do this, we use the docker top command.

Listing 3.21: Inspecting the processes of the daemonized container
$ sudo docker top daemon_dave

We can then see each process (principally our while loop), the user it is running

Version: v1.2.0 (fba92ef) 55



Chapter 3: Getting Started with Docker

as, and the process ID.

Listing 3.22: The docker top output
PID USER COMMAND
977 root /bin/sh -c while true; do echo hello world; sleep 1; ↩
done

1123 root sleep 1

Stopping a daemonized container
If we wish to stop our daemonized container, we can do it with the docker stop
command, like so:

Listing 3.23: Stopping the running Docker container
$ sudo docker stop daemon_dave

or again via its container ID.

Listing 3.24: Stopping the running Docker container by ID
$ sudo docker stop c2c4e57c12c4

NOTE The docker stop command sends a SIGTERM signal to the Docker con-
tainer's running process. If you want to stop a container a bit more enthusiastically,
you can use the docker kill command, which will send a SIGKILL signal to the
container's process.

Run docker ps to check the status of the now-stopped container.

TIP Also useful is the docker ps -n x flag which shows the last x containers,
running or stopped.

Version: v1.2.0 (fba92ef) 56



Chapter 3: Getting Started with Docker

Finding out more about our container
In addition to the information we retrieved about our container using the docker↩
ps command, we can get a whole lot more information using the docker ↩

inspect command.

Listing 3.25: Inspecting a container
$ sudo docker inspect daemon_dave
[{

"ID": "↩
c2c4e57c12c4c142271c031333823af95d64b20b5d607970c334784430bcbd0f↩
",

"Created": "2014-05-10T11:49:01.902029966Z",
"Path": "/bin/sh",
"Args": [

"-c",
"while true; do echo hello world; sleep 1; done"

],
"Config": {

"Hostname": "c2c4e57c12c4",
. . .

The docker inspect command will interrogate our container and return its con-
figuration information, including names, commands, networking configuration,
and a wide variety of other useful data.
We can also selectively query the inspect results hash using the -f or --format
flag.

Version: v1.2.0 (fba92ef) 57



Chapter 3: Getting Started with Docker

Listing 3.26: Selectively inspecting a container
$ sudo docker inspect --format='{{ .State.Running }}' daemon_dave
false

This will return the running state of the container, which in our case is false. We
can also get useful information like the container's IP address.

Listing 3.27: Inspecting the container's IP address
$ sudo docker inspect --format '{{ .NetworkSettings.IPAddress }}'↩

\
daemon_dave
172.17.0.2

TIP The --format or -f flag is a bit more than it seems on the surface. It's actually
a full Go template being exposed. You can make use of all the capabilities of a Go
template when querying it.

We can also list multiple containers and receive output for each.

Listing 3.28: Inspecting multiple containers
$ sudo docker inspect --format '{{.Name}} {{.State.Running}}' \
daemon_dave bob_the_container
/daemon_dave false
/bob_the_container false

We can select any portion of the inspect hash to query and return.

NOTE In addition to inspecting containers, you can see a bit more about how
Docker works by exploring the /var/lib/docker directory. This directory holds
your images, containers, and container configuration. You'll find all your contain-
ers in the /var/lib/docker/containers directory.

Version: v1.2.0 (fba92ef) 58

http://golang.org/pkg/text/template/
http://golang.org/pkg/text/template/


Chapter 3: Getting Started with Docker

Deleting a container
If you are finished with a container, you can delete it using the docker rm com-
mand.

NOTE It's important to note that you can't delete a running Docker container.
You must stop it first using the docker stop command or docker kill command.

Listing 3.29: Deleting a container
$ sudo docker rm 80430f8d0921
80430f8d0921

There isn't currently a way to delete all containers, but you can slightly cheat with
a command like the following:

Listing 3.30: Deleting all containers
docker rm `docker ps -a -q`

This command will list all of the current containers using the docker ps command.
The -a flag lists all containers, and the -q flag only returns the container IDs rather
than the rest of the information about your containers. This list is then passed to
the docker rm command, which deletes each container.

Version: v1.2.0 (fba92ef) 59



Chapter 3: Getting Started with Docker

Summary
We've now been introduced to the basic mechanics of how Docker containers work.
This information will form the basis for how we'll learn to use Docker in the rest
of the book.
In the next chapter, we're going to explore building our own Docker images and
working with Docker repositories and registries.

Version: v1.2.0 (fba92ef) 60



Chapter 4

Working with Docker images and
repositories

In Chapter 2, we learned how to install Docker. In Chapter 3, we learned how to
use a variety of commands to manage Docker containers, including the docker↩
run command.
Let's see the docker run command again.

Listing 4.1: Revisiting creating a basic Docker container
$ sudo docker run -i -t --name another_container_mum ubuntu \
/bin/bash
root@b415b317ac75:/#

This command will launch a new container called another_container_mum from
the ubuntu image and open a Bash shell.
In this chapter, we're going to explore Docker images: the building blocks from
which we launch containers. We'll learn a lot more about Docker images, what
they are, how to manage them, how to modify them, and how to create, store,
and share your own images. We'll also examine the repositories that hold images
and the registries that store repositories.

61



Chapter 4: Working with Docker images and repositories

What is a Docker image?
Let's continue our journey with Docker by learning a bit more about Docker im-
ages. A Docker image is made up of filesystems layered over each other. At the
base is a boot filesystem, bootfs, which resembles the typical Linux/Unix boot
filesystem. A Docker user will probably never interact with the boot filesystem.
Indeed, when a container has booted, it is moved into memory, and the boot
filesystem is unmounted to free up the RAM used by the initrd disk image.
So far this looks pretty much like a typical Linux virtualization stack. Indeed,
Docker next layers a root filesystem, rootfs, on top of the boot filesystem. This
rootfs can be one or more operating systems (e.g., a Debian or Ubuntu filesys-
tem).
In a more traditional Linux boot, the root filesystem is mounted read-only and
then switched to read-write after boot and an integrity check is conducted. In the
Docker world, however, the root filesystem stays in read-only mode, and Docker
takes advantage of a union mount to add more read-only filesystems onto the
root filesystem. A union mount is a mount that allows several filesystems to be
mounted at one time but appear to be one filesystem. The union mount overlays
the filesystems on top of one another so that the resulting filesystem may contain
files and subdirectories from any or all of the underlying filesystems.
Docker calls each of these filesystems images. Images can be layered on top of
one another. The image below is called the parent image and you can traverse
each layer until you reach the bottom of the image stack where the final image
is called the base image. Finally, when a container is launched from an image,
Docker mounts a read-write filesystem on top of any layers below. This is where
whatever processes we want our Docker container to run will execute.
This sounds confusing, so perhaps it is best represented by a diagram.

Version: v1.2.0 (fba92ef) 62

http://en.wikipedia.org/wiki/Union_mount


Chapter 4: Working with Docker images and repositories

Figure 4.1: The Docker filesystem layers

When Docker first starts a container, the initial read-write layer is empty. As
changes occur, they are applied to this layer; for example, if you want to change
a file, then that file will be copied from the read-only layer below into the read-
write layer. The read-only version of the file will still exist but is now hidden
underneath the copy.

Version: v1.2.0 (fba92ef) 63



Chapter 4: Working with Docker images and repositories

This pattern is traditionally called "copy on write" and is one of the features that
makes Docker so powerful. Each read-only image layer is read-only; this image
never changes. When a container is created, Docker builds from the stack of im-
ages and then adds the read-write layer on top. That layer, combined with the
knowledge of the image layers below it and some configuration data, form the con-
tainer. As we discovered in the last chapter, containers can be changed, they have
state, and they can be started and stopped. This, and the image-layering frame-
work, allows us to quickly build images and run containers with our applications
and services.

Listing Docker images
Let's get started with Docker images by looking at what images are available to
us on our Docker host. We can do this using the docker images command.

Listing 4.2: Listing Docker images
$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu latest c4ff7513909d 6 days ago 225.4 MB

We can see that we've got an image, from a repository called ubuntu. So where
does this image come from? Remember in Chapter 3, when we ran the docker↩
run command, that part of the process was downloading an image? In our case,
it's the ubuntu image.

NOTE Local images live on our local Docker host in the /var/lib/docker di-
rectory. Each image will be inside a directory named for your storage driver;
for example, aufs or devicemapper. You'll also find all your containers in the
/var/lib/docker/containers directory.

That image was downloaded from a repository. Images live inside repositories,

Version: v1.2.0 (fba92ef) 64



Chapter 4: Working with Docker images and repositories

and repositories live on registries. The default registry is the public registry man-
aged by Docker, Inc., Docker Hub.

TIP The Docker registry code is open source. You can also run your own registry,
as we'll see later in this chapter.

Figure 4.2: Docker Hub

Inside Docker Hub (or on a Docker registry you run yourself), images are stored
in repositories. You can think of an image repository as being much like a Git
repository. It contains images, layers, and metadata about those images.

Version: v1.2.0 (fba92ef) 65

https://hub.docker.com
https://hub.docker.com


Chapter 4: Working with Docker images and repositories

Each repository can contain multiple images (e.g., the ubuntu repository contains
images for Ubuntu 12.04, 12.10, 13.04, 13.10, and 14.04). Let's get the rest of
the images in the ubuntu repository now.

Listing 4.3: Pulling the Ubuntu image
$ sudo docker pull ubuntu
Pulling repository ubuntu
c4ff7513909d: Pulling dependent layers
3db9c44f4520: Pulling dependent layers
75204fdb260b: Pulling dependent layers
. . .

Here we've used the docker pull command to pull down the entire contents of
the ubuntu repository.
Let's see what our docker images command reveals now.

Listing 4.4: Listing all the ubuntu Docker images
$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 13.10 5e019ab7bf6d 2 weeks ago 180 MB
ubuntu saucy 5e019ab7bf6d 2 weeks ago 180 MB
ubuntu 12.04 74fe38d11401 2 weeks ago 209.6 MB
ubuntu precise 74fe38d11401 2 weeks ago 209.6 MB
ubuntu 12.10 a7cf8ae4e998 2 weeks ago 171.3 MB
ubuntu quantal a7cf8ae4e998 2 weeks ago 171.3 MB
ubuntu 14.04 99ec81b80c55 2 weeks ago 266 MB
ubuntu latest c4ff7513909d 6 days ago 225.4 MB
ubuntu trusty 99ec81b80c55 2 weeks ago 266 MB
ubuntu raring 316b678ddf48 2 weeks ago 169.4 MB
ubuntu 13.04 316b678ddf48 2 weeks ago 169.4 MB
ubuntu 10.04 3db9c44f4520 3 weeks ago 183 MB
ubuntu lucid 3db9c44f4520 3 weeks ago 183 MB

You can see we've now got a series of ubuntu images. We can see that the ubuntu
image is actually a series of images collected under a single repository. In this

Version: v1.2.0 (fba92ef) 66



Chapter 4: Working with Docker images and repositories

case, when we pulled the ubuntu image, we actually got several versions of the
Ubuntu operating system, including 10.04, 12.04, 13.04, and 14.04.

NOTE We call it the Ubuntu operating system, but really it is not the full oper-
ating system. It's a very cut-down version with the bare runtime required to run
the distribution.

We identify each image inside that repository by what Docker calls tags. Each
image is being listed by the tags applied to it, so, for example, 12.10, 12.04↩
, quantal, or precise and so on. Each tag marks together a series of image layers
that represent a specific image (e.g., the 12.04 tag collects together all the layers
of the Ubuntu 12.04 image). This allows us to store more than one image inside
a repository.
We can refer to a specific image inside a repository by suffixing the repository
name with a colon and a tag name, for example:

Listing 4.5: Running a tagged Docker image
$ sudo docker run -t -i --name new_container ubuntu:12.04 /bin/↩
bash

root@79e36bff89b4:/#

This launches a container from the ubuntu:12.04 image, which is an Ubuntu 12.04
operating system. We can also see that some images with the same ID (see image
ID 74fe38d11401) are tagged more than once. Image ID 74fe38d11401 is actu-
ally tagged both 12.04 and precise: the version number and code name for that
Ubuntu release, respectively.
It's always a good idea to build a container from specific tags. That way we'll know
exactly what the source of our container is. There are differences, for example,
between Ubuntu 12.04 and 14.04, so it would be useful to specifically state that
we're using ubuntu:12.04 so we know exactly what we're getting.
There are two types of repositories: user repositories, which contain images con-
tributed by Docker users, and top-level repositories, which are controlled by the

Version: v1.2.0 (fba92ef) 67



Chapter 4: Working with Docker images and repositories

people behind Docker.
A user repository takes the form of a username and a repository name; for example,
jamtur01/puppet.

• Username: jamtur01
• Repository name: puppet

Alternatively, a top-level repository only has a repository name like ubuntu. The
top-level repositories are managed by Docker Inc and by selected vendors who pro-
vide curated base images that you can build upon (e.g., the Fedora team provides
a fedora image). The top-level repositories also represent a commitment from
vendors and Docker Inc that the images contained in them are well constructed,
secure, and up to date.

WARNING User-contributed images are built by members of the Docker com-
munity. You should use them at your own risk: they are not validated or verified
in any way by Docker Inc.

Pulling images
When we run a container from images with the docker run command, if the image
isn't present locally already then Docker will download it from the Docker Hub.
By default, if you don't specify a specific tag, Docker will download the latest
tag, for example:

Listing 4.6: Docker run and the default latest tag
$ sudo docker run -t -i --name next_container ubuntu /bin/bash
root@23a42cee91c3:/#

will download the ubuntu:latest image if it isnt already present on the host.

Version: v1.2.0 (fba92ef) 68



Chapter 4: Working with Docker images and repositories

Alternatively, we can use the docker pull command to pull images down our-
selves. Using docker pull saves us some time launching a container from a new
image. Let's see that now by pulling down the fedora base image.

Listing 4.7: Pulling the fedora image
$ sudo docker pull fedora
Pulling repository fedora
5cc9e91966f7: Download complete
b7de3133ff98: Download complete
511136ea3c5a: Download complete
ef52fb1fe610: Download complete

Let's see this new image on our Docker host using the docker images command.
This time, however, let's narrow our review of the images to only the fedora↩
images. To do so, we can specify the image name after the docker images↩
command.

Listing 4.8: Viewing the fedora image
$ sudo docker images fedora
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedora rawhide 5cc9e91966f7 6 days ago 372.7 MB
fedora 20 b7de3133ff98 3 weeks ago 372.7 MB
fedora heisenbug b7de3133ff98 3 weeks ago 372.7 MB
fedora latest b7de3133ff98 3 weeks ago 372.7 MB

We can see that the fedora image contains the development Rawhide release as
well as Fedora 20. We can also see that the Fedora 20 release is tagged in three
ways -- 20, heisenbug, and latest -- but it is the same image (we can see all three
entries have an ID of b7de3133ff98). If we wanted the Fedora 20 image, therefore,
we could use any of the following:

• fedora:20
• fedora:heisenbug
• fedora:latest

Version: v1.2.0 (fba92ef) 69



Chapter 4: Working with Docker images and repositories

We could have also just downloaded one tagged image using the docker pull
command.

Listing 4.9: Pulling a tagged fedora image
$ sudo docker pull fedora:20

This would have just pulled the fedora:20 image.

Searching for images
We can also search all of the publicly available images on Docker Hub using the
docker search command:

Listing 4.10: Searching for images
$ sudo docker search puppet
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
wfarr/puppet-module...
jamtur01/puppetmaster
. . .

TIP You can also browse the available images online at Docker Hub.

Here, we've searched the Docker Hub for the term puppet. It'll search images and
return:

• Repository names
• Image descriptions
• Stars - these measure the popularity of an image
• Official - an image managed by the upstream developer (e.g., the fedora
image managed by the Fedora team)

• Automated - an image built by the Docker Hub's Automated Build process

Version: v1.2.0 (fba92ef) 70

https://hub.docker.com
https://hub.docker.com


Chapter 4: Working with Docker images and repositories

NOTE We'll see more about Automated Builds later in this chapter.

Let's pull down one of these images.

Listing 4.11: Pulling down the jamtur01/puppetmaster image
$ sudo docker pull jamtur01/puppetmaster

This will pull down the jamtur01/puppetmaster image (which, by the way, con-
tains a pre-installed Puppet master).
We can then use this image to build a new container. Let's do that now using the
docker run command again.

Listing 4.12: Creating a Docker container from the Puppet master image
$ sudo docker run -i -t jamtur01/puppetmaster /bin/bash
root@4655dee672d3:/# facter
architecture => amd64
augeasversion => 1.2.0
. . .
root@4655dee672d3:/# puppet --version
3.4.3

You can see we've launched a new container from our jamtur01/puppetmaster im-
age. We've launched the container interactively and told the container to run the
Bash shell. Once inside the container's shell, we've run Facter (Puppet's inventory
application), which was pre-installed on our image. From inside the container,
we've also run the puppet binary to confirm it is installed.

Building our own images
So we've seen that we can pull down pre-prepared images with custom contents.
How dowe go about modifying our own images and updating andmanaging them?

Version: v1.2.0 (fba92ef) 71



Chapter 4: Working with Docker images and repositories

There are two ways to create a Docker image:

• Via the docker commit command
• Via the docker build command with a Dockerfile

The docker commit method is not currently recommended, as building with a
Dockerfile is far more flexible and powerful, but we'll demonstrate it to you for
the sake of completeness. After that, we'll focus on the recommended method
of building Docker images: writing a Dockerfile and using the docker build
command.

NOTE We don't generally actually "create" new images; rather, we build new
images from existing base images, like the ubuntu or fedora images we've already
seen. If you want to build an entirely new base image, you can see some informa-
tion on this here.

Creating a Docker Hub account
A big part of image building is sharing and distributing your images. We do this
by pushing them to the Docker Hub or your own registry. To facilitate this, let's
start by creating an account on the Docker Hub. You can the join Docker Hub
here.

Version: v1.2.0 (fba92ef) 72

https://docs.docker.com/articles/baseimages/
https://hub.docker.com
https://hub.docker.com/account/signup/


Chapter 4: Working with Docker images and repositories

Figure 4.3: Creating a Docker Hub account.
Create an account and verify your email address from the email you'll receive after
signing up.
Now let's test our new account from Docker. To sign into the Docker Hub you can
use the docker login command.

Listing 4.13: Logging into the Docker Hub
$ sudo docker login
Username: jamtur01
Password:
Email: james@lovedthanlost.net
Login Succeeded

Version: v1.2.0 (fba92ef) 73



Chapter 4: Working with Docker images and repositories

This command will log you into the Docker Hub and store your credentials for
future use.

NOTE Your credentials will be stored in the $HOME/.dockercfg file.

Using Docker commit to create images
The first method of creating images used the docker commit command. You can
think about this method as much like making a commit in a version control system.
We create a container, make changes to that container as you would change code,
and then commit those changes to a new image.
Let's start by creating a container from the ubuntu image we've used in the past.

Listing 4.14: Creating a custom container to modify
$ sudo docker run -i -t ubuntu /bin/bash
root@4aab3ce3cb76:/#

Next, we'll install Apache into our container.

Listing 4.15: Adding the Apache package
root@4aab3ce3cb76:/# apt-get -yqq update
. . .
root@4aab3ce3cb76:/# apt-get -y install apache2
. . .

We've launched our container and then installed Apache within it. We're going
to use this container as a web server, so we'll want to save it in its current state.
That will save us from having to rebuild it with Apache every time we create a
new container. To do this we exit from the container, using the exit command,
and use the docker commit command.

Version: v1.2.0 (fba92ef) 74



Chapter 4: Working with Docker images and repositories

Listing 4.16: Committing the custom container
$ sudo docker commit 4aab3ce3cb76 jamtur01/apache2
8ce0ea7a1528

You can see we've used the docker commit command and specified the ID of the
container we've just changed (to find that ID you could use the docker ps -l↩
-q command to return the ID of the last created container) as well as a target
repository and image name, here jamtur01/apache2. Of note is that the docker↩
commit command only commits the differences between the image the container
was created from and the current state of the container. This means updates are
very lightweight.
Let's look at our new image.

Listing 4.17: Reviewing our new image
$ sudo docker images jamtur01/apache2
. . .
jamtur01/apache2 latest 8ce0ea7a1528 13 seconds ago 90.63 MB

We can also provide some more data about our changes when committing our
image, including tags. For example:

Listing 4.18: Committing another custom container
$ sudo docker commit -m="A new custom image" --author="James ↩
Turnbull" \

4aab3ce3cb76 jamtur01/apache2:webserver
f99ebb6fed1f559258840505a0f5d5b6173177623946815366f3e3acff01adef

Here, we've specified some more information while committing our new image.
We've added the -m option which allows us to provide a commit message explain-
ing our new image. We've also specified the --author option to list the author of
the image. We've then specified the ID of the container we're committing. Finally,
we've specified the username and repository of the image, jamtur01/apache2, and
we've added a tag, webserver, to our image.

Version: v1.2.0 (fba92ef) 75



Chapter 4: Working with Docker images and repositories

We can view this information about our image using the docker inspect com-
mand.

Listing 4.19: Inspecting our committed image
$ sudo docker inspect jamtur01/apache2:webserver
[{

"Architecture": "amd64",
"Author": "James Turnbull",
"Comment": "A new custom image",
. . .

}]

TIP You can find a full list of the docker commit flags here.

If we want to run a container from our new image, we can do so using the docker↩
run command.

Listing 4.20: Running a container from our committed image
$ sudo docker run -t -i jamtur01/apache2:webserver /bin/bash

You'll note that we've specified our image with the full tag: jamtur01/apache2↩
:webserver.

Building images with a Dockerfile
We don't recommend the docker commit approach. Instead, we recommend that
you build images using a definition file called a Dockerfile and the docker ↩
build command.. The Dockerfile uses a basic DSL with instructions for building
Docker images. We then use the docker build command to build a new image
from the instructions in the Dockerfile.

Version: v1.2.0 (fba92ef) 76

http://docs.docker.com/reference/commandline/cli/#commit


Chapter 4: Working with Docker images and repositories

Our first Dockerfile

Let's now create a directory and an initial Dockerfile. We're going to build a
Docker image that contains a simple web server.

Listing 4.21: Creating a sample repository
$ mkdir static_web
$ cd static_web
$ touch Dockerfile

We've created a directory called static_web to hold our Dockerfile. This di-
rectory is our build environment, which is what Docker calls a context or build
context. Docker will upload the build context, as well as any files and directories
contained in it, to our Docker daemon when the build is run. This provides the
Docker daemon with direct access to any code, files or other data you might want
to include in the image.
We've also created an empty Dockerfile file to get started. Now let's look at an
example of a Dockerfile to create a Docker image that will act as a Web server.

Listing 4.22: Our first Dockerfile
# Version: 0.0.1
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
RUN apt-get update
RUN apt-get install -y nginx
RUN echo 'Hi, I am in your container' \

>/usr/share/nginx/html/index.html
EXPOSE 80

The Dockerfile contains a series of instructions paired with arguments. Each
instruction, for example FROM, should be in upper-case and be followed by an
argument: FROM ubuntu:14.04. Instructions in the Dockerfile are processed from
the top down, so you should order them accordingly.
Each instruction adds a new layer to the image and then commits the image.

Version: v1.2.0 (fba92ef) 77



Chapter 4: Working with Docker images and repositories

Docker executing instructions roughly follow a workflow:

• Docker runs a container from the image.
• An instruction executes and makes a change to the container.
• Docker runs the equivalent of docker commit to commit a new layer.
• Docker then runs a new container from this new image.
• The next instruction in the file is executed, and the process repeats until all
instructions have been executed.

This means that if your Dockerfile stops for some reason (for example, if an
instruction fails to complete), you will be left with an image you can use. This is
highly useful for debugging: you can run a container from this image interactively
and then debug why your instruction failed using the last image created.

NOTE The Dockerfile also supports comments. Any line that starts with a #
is considered a comment. You can see an example of this in the first line of our
Dockerfile.

The first instruction in a Dockerfile should always be FROM. The FROM instruction
specifies an existing image that the following instructions will operate on; this
image is called the base image.
In our sample Dockerfile we've specified the ubuntu:14.04 image as our base
image. This specification will build an image on top of an Ubuntu 14.04 base
operating system. As with running a container, you should always be specific
about exactly from which base image you are building.
Next, we've specified the MAINTAINER instruction, which tells Docker who the au-
thor of the image is and what their email address is. This is useful for specifying
an owner and contact for an image.
We've followed these instructions with three RUN instructions. The RUN instruction
executes commands on the current image. The commands in our example: updat-
ing the installed APT repositories, installing the nginx package, then creating the

Version: v1.2.0 (fba92ef) 78



Chapter 4: Working with Docker images and repositories

/usr/share/nginx/html/index.html file containing some example text. As we've
discovered, each of these instructions will create a new layer and, if successful,
will commit that layer and then execute the next instruction.
By default, the RUN instruction executes inside a shell using the command wrapper
/bin/sh -c. If you are running the instruction on a platform without a shell or
you wish to execute without a shell (for example, to avoid shell string munging),
you can specify the instruction in exec format:

Listing 4.23: The RUN instruction in exec form
RUN [ "apt-get", " install", "-y", "nginx" ]

We use this format to specify an array containing the command to be executed
and then each parameter to pass to the command.
Next, we've specified the EXPOSE instruction, which tells Docker that the applica-
tion in this container will use this specific port on the container. That doesn't mean
you can automatically access whatever service is running on that port (here, port
80) on the container. For security reasons, Docker doesn't open the port automati-
cally, but waits for you to do it when you run the container using the docker run
command. We'll see this shortly when we create a new container from this image.
You can specify multiple EXPOSE instructions to mark multiple ports to be exposed.

NOTE Docker also uses the EXPOSE instruction to help link together containers,
which we'll see in Chapter 5.

Building the image from our Dockerfile
All of the instructions will be executed and committed and a new image returned
when we run the docker build command. Let's try that now:

Version: v1.2.0 (fba92ef) 79



Chapter 4: Working with Docker images and repositories

Listing 4.24: Running the Dockerfile
$ cd static_web
$ sudo docker build -t="jamtur01/static_web" .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> ba5877dc9bec
Step 1 : MAINTAINER James Turnbull "james@example.com"
---> Running in b8ffa06f9274
---> 4c66c9dcee35
Removing intermediate container b8ffa06f9274
Step 2 : RUN apt-get update
---> Running in f331636c84f7
Step 2 : RUN apt-get update
---> Running in f331636c84f7
---> 9d938b9e0090
Removing intermediate container f331636c84f7
Step 3 : RUN apt-get install -y nginx
---> Running in 4b989d4730dd
---> 93fb180f3bc9
Removing intermediate container 4b989d4730dd
Step 4 : RUN echo 'Hi, I am in your container' >/usr/share/↩
nginx/html/index.html
---> Running in b51bacc46eb9
---> b584f4ac1def
Removing intermediate container b51bacc46eb9
Step 5 : EXPOSE 80
---> Running in 7ff423bd1f4d
---> 22d47c8cb6e5
Successfully built 22d47c8cb6e5

We've used the docker build command to build our new image. We've specified
the -t option to mark our resulting image with a repository and a name, here the
jamtur01 repository and the image name static_web. I strongly recommend you

Version: v1.2.0 (fba92ef) 80



Chapter 4: Working with Docker images and repositories

always name your images to make it easier to track and manage them.
You can also tag images during the build process by suffixing the tag after the
image name with a colon, for example:

Listing 4.25: Tagging a build
$ sudo docker build -t="jamtur01/static_web:v1" .

TIP If you don't specify any tag, Docker will automatically tag your image as
latest.

The trailing . tells Docker to look in the local directory to find the Dockerfile.
You can also specify a Git repository as a source for the Dockerfile as we can see
here:

Listing 4.26: Building from a Git repository
$ sudo docker build -t="jamtur01/static_web:v1" \
git@github.com:jamtur01/docker-static_web

Here Docker assumes that there is a Dockerfile located in the root of the Git
repository.
But back to our docker build process. You can see that the build context has
been uploaded to the Docker daemon.

Listing 4.27: Uploading the build context to the daemon
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon

TIP If a file named .dockerignore exists in the root of the build context then
it is interpreted as a newline-separated list of exclusion patterns. Much like a
.gitignore file it excludes the listed files from being uploaded to the build context.
Globbing can be done using Go's filepath.

Version: v1.2.0 (fba92ef) 81

http://golang.org/pkg/path/filepath/#Match


Chapter 4: Working with Docker images and repositories

Next, you can see that each instruction in the Dockerfile has been executed with
the image ID, 22d47c8cb6e5, being returned as the final output of the build pro-
cess. Each step and its associated instruction are run individually, and Docker has
committed the result of each operation before outputting that final image ID.

What happens if an instruction fails?
Earlier, we talked about what happens if an instruction fails. Let's look at an
example: let's assume that in Step 4 we got the name of the required package
wrong and instead called it ngin.
Let's run the build again and see what happens when it fails.

Version: v1.2.0 (fba92ef) 82



Chapter 4: Working with Docker images and repositories

Listing 4.28: Managing a failed instruction
$ cd static_web
$ sudo docker build -t="jamtur01/static_web" .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 1 : FROM ubuntu:14.04
---> 8dbd9e392a96

Step 2 : MAINTAINER James Turnbull "james@example.com"
---> Running in d97e0c1cf6ea
---> 85130977028d

Step 3 : RUN apt-get update
---> Running in 85130977028d
---> 997485f46ec4

Step 4 : RUN apt-get install -y ngin
---> Running in ffca16d58fd8

Reading package lists...
Building dependency tree...
Reading state information...
E: Unable to locate package ngin
2014/06/04 18:41:11 The command [/bin/sh -c apt-get install -y ↩
ngin] returned a non-zero code: 100

Let's say I want to debug this failure. I can use the docker run command to create
a container from the last step that succeeded in my Docker build, here the image
ID 997485f46ec4.

Listing 4.29: Creating a container from the last successful step
$ sudo docker run -t -i 997485f46ec4 /bin/bash
dcge12e59fe8:/#

I can then try to run the apt-get install -y ngin step again with the right pack-
age name or conduct some other debugging to determine what went wrong. Once
I've identified the issue, I can exit the container, update my Dockerfile with the
right package name, and retry my build.

Version: v1.2.0 (fba92ef) 83



Chapter 4: Working with Docker images and repositories

Dockerfiles and the build cache
As a result of each step being committed as an image, Docker is able to be really
clever about building images. It will treat previous layers as a cache. If, in our
debugging example, we did not need to change anything in Steps 1 to 3, then
Docker would use the previously built images as a cache and a starting point.
Essentially, it'd start the build process straight from Step 4. This can save you a
lot of time when building images if a previous step has not changed. If, however,
you did change something in Steps 1 to 3, then Docker would restart from the first
changed instruction.
Sometimes, though, you want to make sure you don't use the cache. For example,
if you'd cached Step 3 above, apt-get update, then it wouldn't refresh the APT
package cache. You might want it to do this to get a new version of a package. To
skip the cache, we can use the --no-cache flag with the docker build command..

Listing 4.30: Bypassing the Dockerfile build cache
$ sudo docker build --no-cache -t="jamtur01/static_web" .

Using the build cache for templating
As a result of the build cache, you can build your Dockerfiles in the form of
simple templates (e.g., adding a package repository or updating packages near
the top of the file to ensure the cache is hit). I generally have the same template
set of instructions in the top of my Dockerfile, for example for Ubuntu:

Listing 4.31: A template Ubuntu Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-07-01
RUN apt-get -qq update

Let's step through this new Dockerfile. Firstly, I've used the FROM instruction to
specify a base image of ubuntu:14.04. Next I've added my MAINTAINER instruction

Version: v1.2.0 (fba92ef) 84



Chapter 4: Working with Docker images and repositories

to provide my contact details. I've then specified a new instruction, ENV. The ENV
instruction sets environment variables in the image. In this case, I've specified
the ENV instruction to set an environment variable called REFRESHED_AT, showing
when the template was last updated. Lastly, I've specified the apt-get -qq ↩
update command in a RUN instruction. This refreshes the APT package cache when
it's run, ensuring that the latest packages are available to install.
With my template, when I want to refresh the build, I change the date in my ENV
instruction. Docker then resets the cache when it hits that ENV instruction and runs
every subsequent instruction anew without relying on the cache. This means my
RUN apt-get update instruction is rerun and my package cache is refreshed with
the latest content. You can extend this template example for your target platform
or to fit a variety of needs. For example, for a fedora image we might:

Listing 4.32: A template Fedora Dockerfile
FROM fedora:20
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-07-01
RUN yum -y -q upgrade

which performs a very similar function for Fedora using Yum.

Viewing our new image
Now let's take a look at our new image. We can do this using the docker images
command.

Listing 4.33: Listing our new Docker image
$ sudo docker images jamtur01/static_web
REPOSITORY TAG ID CREATED SIZE
jamtur01/static_web latest 22d47c8cb6e5 24 seconds ago 12.29 kB↩

(virtual 326 MB)

If we want to drill down into how our image was created, we can use the docker↩
history command.

Version: v1.2.0 (fba92ef) 85



Chapter 4: Working with Docker images and repositories

Listing 4.34: Using the docker history command
$ sudo docker history 22d47c8cb6e5
IMAGE CREATED CREATED BY ↩

SIZE
22d47c8cb6e5 6 minutes ago /bin/sh -c #(nop) EXPOSE map[80/tcp↩
:{}] 0 B

b584f4ac1def 6 minutes ago /bin/sh -c echo 'Hi, I am in your ↩
container' 27 B

93fb180f3bc9 6 minutes ago /bin/sh -c apt-get install -y nginx ↩
18.46 MB

9d938b9e0090 6 minutes ago /bin/sh -c apt-get update ↩
20.02 MB

4c66c9dcee35 6 minutes ago /bin/sh -c #(nop) MAINTAINER James ↩
Turnbull " 0 B

. . .

We can see each of the image layers inside our new jamtur01/static_web image
and the Dockerfile instruction that created them.

Launching a container from our new image
We can also now launch a new container using our new image and see if what
we've built has worked.

Listing 4.35: Launching a container from our new image
$ sudo docker run -d -p 80 --name static_web jamtur01/static_web ↩
\

nginx -g "daemon off;"
6751b94bb5c001a650c918e9a7f9683985c3eb2b026c2f1776e61190669494a8

Here I've launched a new container called static_web using the docker run↩
command and the name of the image we've just created. We've specified the

-d option, which tells Docker to run detached in the background. This allows
us to run long-running processes like the Nginx daemon. We've also specified a

Version: v1.2.0 (fba92ef) 86



Chapter 4: Working with Docker images and repositories

command for the container to run: nginx -g "daemon off;". This will launch
Nginx in the foreground to run our web server.
We've also specified a new flag, -p. The -p flag manages which network ports
Docker exposes at runtime. When you run a container, Docker has two methods
of assigning ports on the Docker host:

• Docker can randomly assign a high port from the range 49000 to 49900 on
the Docker host that maps to port 80 on the container.

• You can specify a specific port on the Docker host that maps to port 80 on
the container.

This will open a random port on the Docker host that will connect to port 80 on
the Docker container.
Let's look at what port has been assigned using the docker ps command.

Listing 4.36: Viewing the Docker port mapping
$ sudo docker ps -l
CONTAINER ID IMAGE ... PORTS ↩

NAMES
6751b94bb5c0 jamtur01/static_web:latest ... 0.0.0.0:49154->80/↩
tcp static_web

We can see that port 49154 is mapped to the container port of 80. We can get the
same information with the docker port command.

Listing 4.37: The docker port command
$ sudo docker port 6751b94bb5c0 80
0.0.0.0:49154

We've specified the container ID and the container port for which we'd like to see
the mapping, 80, and it has returned the mapped port, 49154.
The -p option also allows us to be flexible about how a port is exposed to the host.
For example, we can specify that Docker bind the port to a specific port:

Version: v1.2.0 (fba92ef) 87



Chapter 4: Working with Docker images and repositories

Listing 4.38: Exposing a specific port with -p
$ sudo docker run -d -p 80:80 --name static_web jamtur01/↩
static_web \

nginx -g "daemon off;"

This will bind port 80 on the container to port 80 on the local host. Obviously,
it's important to be wary of this direct binding: if you're running multiple contain-
ers, only one container can bind a specific port on the local host. This can limit
Docker's flexibility.
To avoid this, we could bind to a different port.

Listing 4.39: Binding to a different port
$ sudo docker run -d- p 8080:80 --name static_web jamtur01/↩
static_web \

nginx -g "daemon off;"

This would bind port 80 on the container to port 8080 on the local host.
We can also bind to a specific interface.

Listing 4.40: Binding to a specific interface
$ sudo docker run -d -p 127.0.0.1:80:80 --name static_web ↩
jamtur01/static_web \

nginx -g "daemon off;"

Here we've bound port 80 of the container to port 80 on the 127.0.0.1 interface
on the local host. We can also bind to a random port using the same structure.

Listing 4.41: Binding to a random port on a specific interface
$ sudo docker run -d -p 127.0.0.1::80 --name static_web jamtur01/↩
static_web \

nginx -g "daemon off;"

Here we've removed the specific port to bind to on 127.0.0.1. We would now
use the docker inspect or docker port command to see which random port was

Version: v1.2.0 (fba92ef) 88



Chapter 4: Working with Docker images and repositories

assigned to port 80 on the container.

TIP You can bind UDP ports by adding the suffix /udp to the port binding.

Docker also has a shortcut, -P, that allows us to expose all ports we've specified
via EXPOSE instructions in our Dockerfile.

Listing 4.42: Exposing a port with docker run
$ sudo docker run -d -P --name static_web jamtur01/static_web \
nginx -g "daemon off;"

This would expose port 80 on a random port on our local host. It would also
expose any additional ports we had specified with other EXPOSE instructions in
the Dockerfile that built our image.

TIP You can find more information on port redirection here.

With this port number, we can now view the web server on the running container
using the IP address of our host or the localhost on 127.0.0.1.

NOTE You can find the IP address of your local host with the ifconfig or ip
addr command.

Listing 4.43: Connecting to the container via curl
$ curl localhost:49154
Hi, I am in your container

Now we've got a very simple Docker-based web server.

Version: v1.2.0 (fba92ef) 89

http://docs.docker.com/userguide/dockerlinks/#network-port-mapping-refresher


Chapter 4: Working with Docker images and repositories

Dockerfile instructions
We've already seen some of the available Dockerfile instructions, like RUN and
EXPOSE. But there are also a variety of other instructions we can put in our
Dockerfile. These include CMD, ENTRYPOINT, ADD, COPY, VOLUME, WORKDIR, USER,
ONBUILD, and ENV. You can see a full list of the available Dockerfile instructions
here.
We'll also see a lot more Dockerfiles in the next few chapters and see how to
build some cool applications into Docker containers.

CMD

The CMD instruction specifies the command to run when a container is launched. It
is similar to the RUN instruction, but rather than running the command when the
container is being built, it will specify the command to run when the container
is launched, much like specifying a command to run when launching a container
with the docker run command, for example:

Listing 4.44: Specifying a specific command to run
$ sudo docker run -i -t jamtur01/static_web /bin/true

This would be articulated in the Dockerfile as:

Listing 4.45: Using the CMD instruction
CMD ["/bin/true"]

You can also specify parameters to the command, like so:

Listing 4.46: Passing parameters to the CMD instruction
CMD ["/bin/bash", "-l"]

Here we're passing the -l flag to the /bin/bash command.

Version: v1.2.0 (fba92ef) 90

http://docs.docker.com/reference/builder/


Chapter 4: Working with Docker images and repositories

WARNING You'll note that the command is contained in an array. This tells
Docker to run the command 'as-is'. You can also specify the CMD instruction without
an array, in which case Docker will prepend /bin/sh -c to the command. This
may result in unexpected behavior when the command is executed. As a result, it
is recommended that you always use the array syntax.

Lastly, it's important to understand that we can override the CMD instruction using
the docker run command. If we specify a CMD in our Dockerfile and one on the
docker run command line, then the command line will override the Dockerfile's
CMD instruction.

NOTE It's also important to understand the interaction between the CMD instruc-
tion and the ENTRYPOINT instruction. We'll see some more details of this below.

Let's look at this process a little more closely. Let's say our Dockerfile contains
the CMD:

Listing 4.47: Overriding CMD instructions in the Dockerfile
CMD [ "/bin/bash" ]

We can build a new image (let's call it jamtur01/test) using the docker build
command and then launch a new container from this image.

Listing 4.48: Launching a container with a CMD instruction
$ sudo docker run -t -i jamtur01/test
root@e643e6218589:/#

Notice something different? We didn't specify the command to be executed at the
end of the docker run. Instead, Docker used the command specified by the CMD
instruction.
If, however, I did specify a command, what would happen?

Version: v1.2.0 (fba92ef) 91



Chapter 4: Working with Docker images and repositories

Listing 4.49: Overriding a command locally
$ sudo docker run -i -t jamtur01/test /bin/ps
PID TTY TIME CMD
1 ? 00:00:00 ps
$

You can see here that we have specified the /bin/ps command to list running
processes. Instead of launching a shell, the container merely returned the list
of running processes and stopped, overriding the command specified in the CMD
instruction.

TIP You can only specify one CMD instruction in a Dockerfile. If more than one
is specified, then the last CMD instruction will be used. If you need to run multiple
processes or commands as part of starting a container you should use a service
management tool like Supervisor.

ENTRYPOINT

Closely related to the CMD instruction, and often confused with it, is the
ENTRYPOINT instruction.. So what's the difference between the two, and why are
they both needed? As we've just discovered, we can override the CMD instruction
on the docker run command line. Sometimes this isn't great when we want
a container to behave in a certain way. The ENTRYPOINT instruction provides
a command that isn't as easily overridden. Instead, any arguments we specify
on the docker run command line will be passed as arguments to the command
specified in the ENTRYPOINT. Let's see an example of an ENTRYPOINT instruction.

Listing 4.50: Specifying an ENTRYPOINT
ENTRYPOINT ["/usr/sbin/nginx"]

Like the CMD instruction, we also specify parameters by adding to the array. For

Version: v1.2.0 (fba92ef) 92

http://supervisord.org/


Chapter 4: Working with Docker images and repositories

example:

Listing 4.51: Specifying an ENTRYPOINT parameter
ENTRYPOINT ["/usr/sbin/nginx", "-g", "daemon off;"]

NOTE As with the CMD instruction above, you can see that we've specified the
ENTRYPOINT command in an array to avoid any issues with the command being
prepended with /bin/sh -c.

Now let's rebuild our image with an ENTRYPOINT of ENTRYPOINT ["/usr/sbin/↩
nginx"].

Listing 4.52: Rebuilding static_web with a new ENTRYPOINT
$ sudo docker build -t="jamtur01/static_web" .

And then launch a new container from our jamtur01/static_web image.

Listing 4.53: Using docker run with ENTRYPOINT
$ sudo docker run -t -i jamtur01/static_web -g "daemon off;"

As we can see, we've rebuilt our image and then launched an interactive container.
We specified the argument -g "daemon off;". This argument will be passed to
the command specified in the ENTRYPOINT instruction, which will thus become /↩
usr/sbin/nginx -g "daemon off;". This command would then launch the Nginx
daemon in the foreground and leave the container running as a web server server.
We can also combine ENTRYPOINT and CMD to do some neat things. For example,
we might want to specify the following in our Dockerfile.

Listing 4.54: Using ENTRYPOINT and CMD together
ENTRYPOINT ["/usr/sbin/nginx"]
CMD ["-h"]

Version: v1.2.0 (fba92ef) 93



Chapter 4: Working with Docker images and repositories

Now when we launch a container, any option we specify will be passed to the
Nginx daemon; for example, we could specify -g "daemon off"; as we did above
to run the daemon in the foreground. If we don't specify anything to pass to the
container, then the -h is passed by the CMD instruction and returns the Nginx help
text: /usr/sbin/nginx -h.
This allows us to build in a default command to execute when our container is run
combined with overridable options and flags on the docker run command line.

TIP If required at runtime, you can override the ENTRYPOINT instruction using
the docker run command with --entrypoint flag.

WORKDIR

The WORKDIR instruction provides a way to set the working directory for the con-
tainer and the ENTRYPOINT and/or CMD to be executed when a container is launched
from the image.
We can use it to set the working directory for a series of instructions or for the
final container. For example, to set the working directory for a specific instruction
we might:

Listing 4.55: Using the WORKDIR instruction
WORKDIR /opt/webapp/db
RUN bundle install
WORKDIR /opt/webapp
ENTRYPOINT [ "rackup" ]

Here we've changed into the /opt/webapp/db directory to run bundle install and
then changed into the /opt/webapp directory prior to specifying our ENTRYPOINT
instruction of rackup.
You can override the working directory at runtime with the -w flag, for example:

Version: v1.2.0 (fba92ef) 94



Chapter 4: Working with Docker images and repositories

Listing 4.56: Overridding the working directory
$ sudo docker run -ti -w /var/log ubuntu pwd
/var/log

This will set the container's working directory to /var/log.

ENV

The ENV instruction is used to set environment variables during the image build
process. For example:

Listing 4.57: Setting an environment variable in Dockerfile
ENV RVM_PATH /home/rvm/

This new environment variable will be used for any subsequent RUN instructions,
as if we had specified an environment variable prefix to a command like so:

Listing 4.58: Prefixing a RUN instruction
RUN gem install unicorn

would be executed as:
Listing 4.59: Executing with an ENV prefix
RVM_PATH=/home/rvm/ gem install unicorn

These environment variables will also be persisted into any containers created
from your image. So, if we were to run env in a container build with the ENV ↩
RVM_PATH /home/rvm/ instruction we'd see:

Listing 4.60: Persisent environment variables in Docker containers
root@bf42aadc7f09:~# env
. . .
RVM_PATH=/home/rvm/
. . .

Version: v1.2.0 (fba92ef) 95



Chapter 4: Working with Docker images and repositories

You can also pass environment variables on the docker run command line using
the -e flag. These variables will only apply at runtime, for example:

Listing 4.61: Runtime environment variables
$ sudo docker run -ti -e "WEB_PORT=8080" ubuntu env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=792b171c5e9f
TERM=xterm
WEB_PORT=8080

We can see that our container has the WEB_PORT environment variable set to 8080.

USER

The USER instruction specifies a user that the image should be run as; for example:

Listing 4.62: Using the USER instruction
USER nginx

This will cause containers created from the image to be run by the nginx user. We
can specify a username or a UID and group or GID. Or even a combination thereof,
for example:

Listing 4.63: Specifying USER and GROUP variants
USER user
USER user:group
USER uid
USER uid:gid
USER user:gid
USER uid:group

You can also override this at runtime by specifying the -u flag with the docker↩
run command.

Version: v1.2.0 (fba92ef) 96



Chapter 4: Working with Docker images and repositories

TIP The default user if you don't specify the USER instruction is root.

VOLUME

The VOLUME instruction adds volumes to any container created from the image.
A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

• Volumes can be shared and reused between containers.
• A container doesn't have to be running to share its volumes.
• Changes to a volume are made directly.
• Changes to a volume will not be included when you update an image.
• Volumes persist until no containers use them.

This allows us to add data (like source code), a database, or other content into an
image without committing it to the image and allows us to share that data between
containers. This can be used to do testing with containers and an application's
code, manage logs, or handle databases inside a container. We'll see examples of
this in Chapters 5 and 6.
You can use the VOLUME instruction like so:

Listing 4.64: Using the VOLUME instruction
VOLUME ["/opt/project"]

This would attempt to create a mount point /opt/project to any container created
from the image.
Or we can specify multiple volumes by specifying an array:

Listing 4.65: Using multiple VOLUME instructions
VOLUME ["/opt/project", "/data" ]

Version: v1.2.0 (fba92ef) 97



Chapter 4: Working with Docker images and repositories

TIP We'll see a lot more about volumes and how to use them in Chapters 5 and
6. If you're curious in the meantime, you can read more about volumes here.

ADD

The ADD instruction adds files and directories from our build environment into our
image; for example, when installing an application. The ADD instruction specifies
a source and a destination for the files, like so:

Listing 4.66: Using the ADD instruction
ADD software.lic /opt/application/software.lic

This ADD instruction will copy the file software.lic from the build directory to /↩
opt/application/software.lic in the image. The source of the file can be a URL,
filename, or directory as long as it is inside the build context or environment. You
can cannot ADD files from outside the build directory or context.
When ADD'ing files Docker uses the ending character of the destination to deter-
mine what the source is. If the destination ends in a /, then it considers the source
a directory. If it doesn't end in a /, it considers the source a file.
The source of the file can also be a URL; for example:

Listing 4.67: URL as the source of an ADD instruction
ADD http://wordpress.org/latest.zip /root/wordpress.zip

Lastly, the ADD instruction has some special magic for taking care of local tar↩
archives. If a tar archive (valid archive types include gzip, bzip2, xz) is specified
as the source file, then Docker will automatically unpack it for you:

Listing 4.68: URL as the source of an ADD instruction
ADD latest.tar.gz /var/www/wordpress/

Version: v1.2.0 (fba92ef) 98

http://docs.docker.com/userguide/dockervolumes/


Chapter 4: Working with Docker images and repositories

This will unpack the latest.tar.gz archive into the /var/www/wordpress/ direc-
tory. The archive is unpacked with the same behavior as running tar with the
-x option: the output is the union of whatever exists in the destination plus the
contents of the archive. If a file or directory with the same name already exists in
the destination, it will not be overwritten.

WARNING Currently this will not work with a tar archive specified in a URL.
This is somewhat inconsistent behavior and may change in a future release.

Finally, if the destination doesn't exist, Docker will create the full path for us,
including any directories. New files and directories will be created with a mode
of 0755 and a UID and GID of 0.

NOTE It's also important to note that the build cache can be invalidated by ADD
instructions. If the files or directories added by an ADD instruction change then
this will invalidate the cache for all following instructions in the Dockerfile.

COPY

The COPY instruction is closely related to the ADD instruction. The key difference
is that the COPY instruction is purely focused on copying local files from the build
context and does not have any extraction or decompression capabilities.

Listing 4.69: Using the COPY instruction
COPY conf.d/ /etc/apache2/

This will copy files from the conf.d directory to the /etc/apache2/ directory.
The source of the files must be the path to a file or directory relative to the build
context, the local source directory in which your Dockerfile resides. You cannot

Version: v1.2.0 (fba92ef) 99



Chapter 4: Working with Docker images and repositories

copy anything that is outside of this directory, because the build context is up-
loaded to the Docker daemon, and the copy takes place there. Anything outside
of the build context is not available. The destination should be an absolute path
inside the container.
Any files and directories created by the copy will have a UID and GID of 0.
If the source is a directory, the entire directory is copied, including filesystem
metadata; if the source is any other kind of file, it is copied individually along
with its metadata. In our example, the destination ends with a trailing slash /, so
it will be considered a directory and copied to the destination directory.
If the destination doesn't exist, it is created along with all missing directories in
its path, much like how the mkdir -p command works.

ONBUILD

The ONBUILD instruction adds triggers to images. A trigger is executed when the
image is used as the basis of another image (e.g., if you have an image that needs
source code added from a specific location that might not yet be available, or if
you need to execute a build script that is specific to the environment in which the
image is built).
The trigger inserts a new instruction in the build process, as if it were specified
right after the FROM instruction. The trigger can be any build instruction. For
example:

Listing 4.70: Adding ONBUILD instructions
ONBUILD ADD . /app/src
ONBUILD RUN cd /app/src && make

This would add an ONBUILD trigger to the image being created, which we can see
when we run docker inspect on the image.

Version: v1.2.0 (fba92ef) 100



Chapter 4: Working with Docker images and repositories

Listing 4.71: Showing ONBUILD instructions with docker inspect
$ sudo docker inspect 508efa4e4bf8
...
"OnBuild": [

"ADD . /app/src",
"RUN cd /app/src/ && make"

]
...

For example, we'll build a new Dockerfile for an Apache2 image that we'll call
jamtur01/apache2.

Listing 4.72: A new ONBUILD image Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
RUN apt-get update
RUN apt-get install -y apache2
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ONBUILD ADD . /var/www/
EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2"]
CMD ["-D", "FOREGROUND"]

Now we'll build this image.

Listing 4.73: Building the apache2 image
$ sudo docker build -t="jamtur01/apache2" .
...
Step 7 : ONBUILD ADD . /var/www/
---> Running in 0e117f6ea4ba
---> a79983575b86
Successfully built a79983575b86

Version: v1.2.0 (fba92ef) 101



Chapter 4: Working with Docker images and repositories

We now have an image with an ONBUILD instruction that uses the ADD instruction
to add the contents of the directory we're building from to the /var/www/ directory
in our image. This could readily be our generic web application template from
which I build web applications.
Let's try this now by building a new image called webapp from the following
Dockerfile:

Listing 4.74: The webapp Dockerfile
FROM jamtur01/apache2
MAINTAINER James Turnbull "james@example.com"
ENV APPLICATION_NAME webapp
ENV ENVIRONMENT development

Let's look at what happens when I build this image.

Listing 4.75: Building our webapp image
$ sudo docker build -t="jamtur01/webapp" .
...
Step 0 : FROM jamtur01/apache2
# Executing 1 build triggers
Step onbuild-0 : ADD . /var/www/
---> 1a018213a59d
---> 1a018213a59d
Step 1 : MAINTAINER James Turnbull "james@example.com"
...
Successfully built 04829a360d86

We can see that straight after the FROM instruction, Docker has inserted the ADD
instruction, specified by the ONBUILD trigger, and then proceeded to execute the
remaining steps. This would allow me to always add the local source and, as I've
done here, specify some configuration or build information for each application;
hence, this becomes a useful template image.
The ONBUILD triggers are executed in the order specified in the parent image and
are only inherited once (i.e., by children and not grandchildren). If we built an-

Version: v1.2.0 (fba92ef) 102



Chapter 4: Working with Docker images and repositories

other image from this new image, a grandchild of the jamtur01/apache2 image,
then the triggers would not be executed when that image is built.

NOTE There are several instructions you can't ONBUILD: FROM, MAINTAINER, and
ONBUILD itself. This is done to prevent inception-like recursion in Dockerfile
builds.

Pushing images to the Docker Hub
Once we've got an image, we can upload it to the Docker Hub. This allows us to
make it available for others to use. For example, we could share it with others in
our organization or make it publicly available.

NOTE The Docker Hub also has the option of private repositories. These are a
paid-for feature that allows you to store an image in a private repository that is
only available to you or anyone with whom you share it. This allows you to have
private images containing proprietary information or code you might not want to
share publicly.

We push images to the Docker Hub using the docker push command.
Let's try a push now.

Listing 4.76: Trying to push a root image
$ sudo docker push static_web
2013/07/01 18:34:47 Impossible to push a "root" repository. ↩
Please rename your repository in <user>/<repo> (ex: jamtur01/↩
static_web)

Version: v1.2.0 (fba92ef) 103

https://hub.docker.com


Chapter 4: Working with Docker images and repositories

What's gone wrong here? We've tried to push our image to the repository
static_web, but Docker knows this is a root repository. Root repositories are
managed only by the Docker, Inc., team and will reject our attempt to write to
them. Let's try again.

Listing 4.77: Pushing a Docker image
$ sudo docker push jamtur01/static_web
The push refers to a repository [jamtur01/static_web] (len: 1)
Processing checksums
Sending image list
Pushing repository jamtur01/static_web to registry-1.docker.io (1↩

tags)
. . .

This time, our push has worked, and we've written to a user repository, jamtur01↩
/static_web. We would write to your own user ID, which we created earlier, and
to an appropriately named image (e.g., youruser/yourimage).
We can now see our uploaded image on the Docker Hub.

Version: v1.2.0 (fba92ef) 104

https://registry.hub.docker.com/u/jamtur01/static_web/


Chapter 4: Working with Docker images and repositories

Figure 4.4: Your image on the Docker Hub.

TIP You can find documentation and more information on the features of the
Docker Hub here.

Automated Builds
In addition to being able to build and push our images from the command line,
the Docker Hub also allows us to define Automated Builds. We can do so by con-
necting a GitHub or BitBucket repository containing a Dockerfile to the Docker
Hub. When we push to this repository, an image build will be triggered and a new
image created. This was previously also known as a Trusted Build.

Version: v1.2.0 (fba92ef) 105

http://docs.docker.com/docker-hub/
https://www.github.com
https://bitbucket.com
https://hub.docker.com
https://hub.docker.com


Chapter 4: Working with Docker images and repositories

NOTE Automated Builds also work for private GitHub and BitBucket reposito-
ries.

The first step in adding an Automated Build to the Docker Hub is to connect your
GitHub account or BitBucket to your Docker Hub account. To do this, navigate to
Docker Hub, sign in, click on your profile link, then click the Add Repository ↩
-> Automated Build button.

Figure 4.5: The Add Repository button.

You will see a page that shows your options for linking to either GitHub or Bit-
Bucket.

Version: v1.2.0 (fba92ef) 106



Chapter 4: Working with Docker images and repositories

Figure 4.6: Account linking options.

Click the Select button under the GitHub logo to initiate the account linkage. You
will be taken to GitHub and asked to authorize access for Docker Hub.

Version: v1.2.0 (fba92ef) 107



Chapter 4: Working with Docker images and repositories

Figure 4.7: Linking your GitHub account

You have two options: Public and Private (recommended) and Limited. Select
Public and Private (recommended), and click Allow Access to complete the au-
thorization. You may be prompted to input your GitHub password to confirm the
access.
From here, you will be prompted to select the organization and repository from
which you want to construct an Automated Build.

Version: v1.2.0 (fba92ef) 108



Chapter 4: Working with Docker images and repositories

Figure 4.8: Selecting your repository.

Select the repository from which you wish to create an Automated Build by click-
ing the Select button next to the required repository, and then configure the
build.

Version: v1.2.0 (fba92ef) 109



Chapter 4: Working with Docker images and repositories

Figure 4.9: Configuring your Automated Build.

Specify the default branch you wish to use, and confirm the repository name.
Specify a tag you wish to apply to any resulting build, then specify the location of
the Dockerfile. The default is assumed to be the root of the repository, but you
can override this with any path.
Finally, click the Create Repository button to add your Automated Build to the
Docker Hub.

Version: v1.2.0 (fba92ef) 110



Chapter 4: Working with Docker images and repositories

Figure 4.10: Creating your Automated Build.

You will now see your Automated Build submitted. Click on the Build Status↩
link to see the status of the last build, including log output showing the build
process and any errors. A build status of Done indicates the Automated Build is
up to date. An Error status indicates a problem; you can click through to see the
log output.

NOTE You can't push to an Automated Build using the docker push command.
You can only update it by pushing updates to your GitHub or BitBucket repository.

Deleting an image
We can also delete images when we don't need them anymore. To do this, we'll
use the docker rmi command.

Version: v1.2.0 (fba92ef) 111



Chapter 4: Working with Docker images and repositories

Listing 4.78: Deleting a Docker image
$ sudo docker rmi jamtur01/static_web
Untagged: 06c6c1f81534
Deleted: 06c6c1f81534
Deleted: 9f551a68e60f
Deleted: 997485f46ec4
Deleted: a101d806d694
Deleted: 85130977028d

Here we've deleted the jamtur01/static_web image. You can see Docker's layer
filesystem at work here: each of the Deleted: lines represents an image layer
being deleted.

NOTE This only deletes the image locally. If you've previously pushed that
image to the Docker Hub, it'll still exist there.

If you want to delete an image's repository on the Docker Hub, you'll need to sign
in and delete it there using the Delete repository link.

Version: v1.2.0 (fba92ef) 112

https://registry.hub.docker.com/u/jamtur01/static_web/


Chapter 4: Working with Docker images and repositories

Figure 4.11: Deleting a repository.

We can also delete more than one image by specifying a list on the command line.

Listing 4.79: Deleting multiple Docker images
$ sudo docker rmi jamtur01/apache2 jamtur01/puppetmaster

or, like the docker rm command cheat we saw in Chapter 3, we can do the same
with the docker rmi command:

Listing 4.80: Deleting all images
$ sudo docker rmi `docker images -a -q`

Version: v1.2.0 (fba92ef) 113



Chapter 4: Working with Docker images and repositories

Running your own Docker registry
Obviously, having a public registry of Docker images is highly useful. Sometimes,
however, we are going to want to build and store images that contain information
or data that we don't want to make public. There are two choices in this situation:

• Make use of private repositories on the Docker Hub.
• Run your own registry behind the firewall.

Thankfully, the team at Docker, Inc., have open-sourced the code they use to run
a Docker registry, thus allowing us to build our own internal registry.

NOTE The registry does not currently have a user interface and is only made
available as an API server.

Running a registry from a container
Installing a registry from a Docker container is very simple. Just run the Docker-
provided container like so:

Listing 4.81: Running a container-based registry
$ sudo docker run -p 5000:5000 registry

This will launch a container running the registry application and bind port 5000
to the local host.

Testing the new registry
So how can we make use of our new registry? Let's see if we can upload one of
our existing images, the jamtur01/static_web image, to our new registry. First,
let's identify the image's ID using the docker images command.

Version: v1.2.0 (fba92ef) 114

https://registry.hub.docker.com/plans/
https://github.com/docker/docker-registry


Chapter 4: Working with Docker images and repositories

Listing 4.82: Listing the jamtur01 static_web Docker image
$ sudo docker images jamtur01/static_web
REPOSITORY TAG ID CREATED SIZE
jamtur01/static_web latest 22d47c8cb6e5 24 seconds ago 12.29 ↩
kB (virtual 326 MB)

Next we take our image ID, 22d47c8cb6e5, and tag it for our new registry. To
specify the new registry destination, we prefix the image name with the hostname
and port of our new registry. In our case, our new registry has a hostname of
docker.example.com.

Listing 4.83: Tagging our image for our new registry
$ sudo docker tag 22d47c8cb6e5 docker.example.com:5000/jamtur01/↩
static_web

After tagging our image, we can then push it to the new registry using the docker↩
push command:

Listing 4.84: Pushing an image to our new registry
$ sudo docker push docker.example.com:5000/jamtur01/static_web
The push refers to a repository [docker.example.com:5000/jamtur01↩
/static_web] (len: 1)

Processing checksums
Sending image list
Pushing repository docker.example.com:5000/jamtur01/static_web (1↩

tags)
Pushing 22↩
d47c8cb6e556420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c

Buffering to disk 58375952/? (n/a)
Pushing 58.38 MB/58.38 MB (100%)
. . .

The image is then posted in the local registry and available for us to build new
containers using the docker run command.

Version: v1.2.0 (fba92ef) 115



Chapter 4: Working with Docker images and repositories

Listing 4.85: Building a container from our local registry
$ sudo docker run -t -i docker.example.com:5000/jamtur01/↩
static_web /bin/bash

This is the simplest deployment of the Docker registry behind your firewall. It
doesn't explain how to configure the registry or manage it. To find out details
like configuring authentication, how to manage the backend storage for your im-
ages and how to manage your registry see the full configuration and deployments
details in the Docker Registry documentation.

Alternative Indexes
There are a variety of other services and companies out there starting to provide
custom Docker registry services.

Quay
The Quay service provides a private hosted registry that allows you to upload
both public and private containers. Unlimited public repositories are currently
free. Private repositories are available in a series of scaled plans.

Summary
In this chapter, we've seen how to use and interact with Docker images and the
basics of modifying, updating, and uploading images to the Docker Index. We've
also learnt about using a Dockerfile to construct our own custom images. Finally,
we've discovered how to run our own local Docker registry and some hosted alter-
natives. This gives us the basis for starting to build services with Docker.
We'll use this knowledge in the next chapter to see how we can integrate Docker
into a testing workflow and into a Continuous Integration lifecycle.

Version: v1.2.0 (fba92ef) 116

https://github.com/docker/docker-registry/blob/master/README.md
https://quay.io/


Chapter 5

Testing with Docker

We've learnt a lot about the basics of Docker in the previous chapters. We've
learnt about images, the basics of launching, and working with containers. Now
that we've got those basics down, let's try to use Docker in earnest. We're going
to start by using Docker to help us make our development and testing processes a
bit more streamlined and efficient.
To demonstrate this, we're going to look at three use cases:

• Using Docker to test a static website.
• Using Docker to build and test a web application.
• Using Docker for Continuous Integration.

NOTE We're using Jenkins for CI because it's the platform I have the most
experience with, but you can adapt most of the ideas contained in those sections
to any CI platform.

In the first two use cases, we're going to focus on local, developer-centric devel-
oping and testing, and in the last use case, we'll see how Docker might be used in
a broader multi-developer lifecycle for build and test.

117



Chapter 5: Testing with Docker

This chapter will introduce you to using Docker as part of your daily life and
workflow. It also contains a lot of useful information on how to run and manage
Docker in general, and I recommend you read it even if these use cases aren't
immediately relevant to you.

Using Docker to test a static website
One of the simplest use cases for Docker is as a local web development environ-
ment. An environment that allows you to replicate your production environment
and ensure what you develop will run in the environment to which you want to
deploy it. We're going to start with installing an Nginx container to run a simple
website.

An initial Dockerfile
To do this, let's start with a simple Dockerfile.
Let's create a directory to hold our Dockerfile first.

Listing 5.1: Creating a directory for our Nginx Dockerfile
$ mkdir nginx
$ cd nginx
$ touch Dockerfile

Now let's look at our Dockerfile.

Version: v1.2.0 (fba92ef) 118



Chapter 5: Testing with Docker

Listing 5.2: Our basic Dockerfile for website testing
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01
RUN apt-get update
RUN apt-get -y -q install nginx
RUN mkdir -p /var/www/html
ADD nginx/global.conf /etc/nginx/conf.d/
ADD nginx/nginx.conf /etc/nginx/nginx.conf
EXPOSE 80

Here we've written a simple Dockerfile that:

• Installs Nginx.
• Creates a directory to hold our website.
• Adds the Nginx configuration from local files to our image.
• Exposes port 80 on the image.

Our two Nginx configuration files configure Nginx for running our test website.
The nginx/global.conf file is copied into the /etc/nginx/conf.d/ directory by
the ADD instruction. The global.conf configuration file specifies:

Listing 5.3: The global.conf
server {

listen 0.0.0.0:80;
server_name _;

root /var/www/html/website;
index index.html index.htm;

access_log /var/log/nginx/default_access.log;
error_log /var/log/nginx/default_error.log;

}

Version: v1.2.0 (fba92ef) 119



Chapter 5: Testing with Docker

This sets Nginx to listen on port 80 and sets the root of our webserver to /var/↩
www/html/website.
We also need to configure Nginx to run non-daemonized in order to allow it to
work inside our Docker container. To do this, the nginx/nginx.conf file is copied
into the /etc/nginx directory and contains:

Listing 5.4: The nginx.conf configuration file
user www-data;
worker_processes 4;
pid /run/nginx.pid;
daemon off;

events { }

http {
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
types_hash_max_size 2048;
include /etc/nginx/mime.types;
default_type application/octet-stream;
access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;
gzip on;
gzip_disable "msie6";
include /etc/nginx/conf.d/*.conf;

}

In this configuration file, the daemon off; option stops Nginx from going into
the background and forces it to run in the foreground. This is because Docker
containers rely on the running process inside them to remain active. By default,
Nginx daemonizes itself when started, which would cause the container to run
briefly and then stop when the daemon was forked and launched and the original

Version: v1.2.0 (fba92ef) 120



Chapter 5: Testing with Docker

process that forked it stopped.
This file is copied to /etc/nginx/nginx.conf by the ADD instruction.
You'll also see a subtle difference between the destinations of the two ADD instruc-
tions. The first ends in the directory, /etc/nginx/conf.d/, and the second in a
specific file /etc/nginx/nginx.conf. Both styles are accepted ways of copying
files into a Docker image.

NOTE You can find all the code and sample configuration files for this at The
Docker Book Code site or the GitHub repository. You can specifically download
the nginx.conf and global.conf configuration files into the nginx directory we
created to make them available for the docker build.

Building our Nginx image
From this Dockerfile, we can build ourselves a new image with the docker ↩
build command; we'll call it jamtur01/nginx.

Listing 5.5: Building our new Nginx image
$ sudo docker build -t jamtur01/nginx .

This will build and name our new image, and you should see the build steps
execute. We can take a look at the steps and layers that make up our new image
using the docker history command.

Version: v1.2.0 (fba92ef) 121

http://www.dockerbook.com/code.htm
http://www.dockerbook.com/code.htm
https://github.com/jamtur01/dockerbook-code


Chapter 5: Testing with Docker

Listing 5.6: Showing the history of the Nginx image
$ sudo docker history jamtur01/nginx
IMAGE CREATED CREATED BY ↩

SIZE
7eae7a24daba 2 minutes ago /bin/sh -c #(nop) EXPOSE map[80/tcp↩
:{}] 0 B

bfea01c931f1 2 minutes ago /bin/sh -c #(nop) ADD file:5545063↩
a4ee791201a 415 B

3dd97f7c6e01 2 minutes ago /bin/sh -c #(nop) ADD file:3↩
c22f6ad1b04b40761 286 B

9e2ba0dbe0ce 2 minutes ago /bin/sh -c mkdir -p /var/www/html ↩
0 B

a34fb588afa3 2 minutes ago /bin/sh -c apt-get -y -q install nginx↩
18.43 MB

8df0d38229b7 3 minutes ago /bin/sh -c apt-get update ↩
75.49 MB

51e7e1e3a370 3 minutes ago /bin/sh -c #(nop) ENV REFRESHED_AT↩
=2014-06-01 0 B

2e4137b1b4ae 3 minutes ago /bin/sh -c #(nop) MAINTAINER James ↩
Turnbull " 0 B

99ec81b80c55 6 weeks ago /bin/sh -c apt-get update && apt-get ↩
install 73.33 MB

d4010efcfd86 6 weeks ago /bin/sh -c sed -i 's/^#\s*\(deb.*↩
universe\)$/ 1.903 kB

4d26dd3ebc1c 6 weeks ago /bin/sh -c echo '#!/bin/sh' > /usr/↩
sbin/polic 194.5 kB

5e66087f3ffe 6 weeks ago /bin/sh -c #(nop) ADD file:175959↩
bb3b959f73e9 192.5 MB

511136ea3c5a 11 months ago ↩
0 B

The history starts with the final layer, our new jamtur01/nginx, image and works
backward to the original parent image, ubuntu:14.04. Each step in between shows
the new layer and the instruction from the Dockerfile that generated it.

Version: v1.2.0 (fba92ef) 122



Chapter 5: Testing with Docker

Building containers from our Nginx image
We can now take our jamtur01/nginx image and start to build containers from it,
which will allow us to test our website. Firstly, though we need a website to test.
Let's copy some code to do that now.

Listing 5.7: Downloading our test site
$ cd nginx
$ mkdir website && cd website
$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code↩
/master/code/5/website/website/index.html

$ cd ..

This will download an index.html file as the root of our test website.
Now let's look at howwemight create a container using the docker run command.

Listing 5.8: Building our first Nginx testing container
$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website \
jamtur01/nginx nginx

NOTE You can see we've passed the nginx command to docker run. Normally
this wouldn't make Nginx run interactively. In the configuration we supplied to
Docker, though, we've added the directive daemon off. This directive causes
Nginx to run interactively in the foreground when launched.

You can see we've used the docker run command to build a container from our
jamtur01/nginx image called website. You will have seen most of the options
before, but the -v option is new. This new option allows us to create a volume in
our container from a directory on the host.
Let's take a brief digression into volumes, as they are important and useful in
Docker. Volumes are specially designated directories within one or more contain-

Version: v1.2.0 (fba92ef) 123



Chapter 5: Testing with Docker

ers that bypass the layered Union File System to provide persistent or shared data
for Docker. This means that changes to a volume are made directly and bypass
the image. They will not be included when we commit or build an image.

TIP Volumes can also be shared between containers and can persist even when
containers are stopped. We'll see how to make use of this for data management
in later chapters.

In our immediate case, we can see the value of volumes when we don't want to
bake our application or code into an image. For example:

• We want to work on and test it simultaneously.
• It changes frequently, and we don't want to rebuild the image during our
development process.

• We want to share the code between multiple containers.
The -v option works by specifying a source directory or mount on the local host
separated from the destination on the container with a :. If the destination direc-
tory doesn't exist Docker will create it.
We can also specify the read/write status of the destination by adding either rw
or ro after that destination, like so:

Listing 5.9: Controlling the write status of a volume
$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website:ro \
jamtur01/nginx nginx

This would make the destination /var/www/html/website read-only.
In our Nginx application container, we've mounted a local website we're devel-
oping. To do this we've mounted, as a volume, the directory $PWD/website to
/var/www/html/website in our container. In our Nginx configuration (in the /↩
etc/nginx/conf.d/global.conf configuration file), we've specified this directory
as the location to be served out by the Nginx server.

Version: v1.2.0 (fba92ef) 124



Chapter 5: Testing with Docker

TIP The website directory we're using is contained in the source code for this
book here and on GitHub. You can see the index.html file we downloaded inside
that directory.

Now, if we look at our running container using the docker ps command, we can
see that it is active, it is named website, and port 80 is mapped to port 49161.

Listing 5.10: Viewing the Nginx container
$ sudo docker ps -l
CONTAINER ID IMAGE ... PORTS ↩
NAMES

6751b94bb5c0 jamtur01/nginx:latest ... 0.0.0.0:49161->80/tcp ↩
website

If we browse to port 49161 on our Docker host, we'll be able to see our website
displayed.

Figure 5.1: Browsing the Nginx test site.

Editing our website
Neat! We've got a site live. Now what happens if we edit our website? Let's open
up the index.html file in the website folder on our local host and edit it.

Version: v1.2.0 (fba92ef) 125

http://dockerbook.com/code/5/website/
https://github.com/jamtur01/dockerbook-code/tree/master/code/5/website


Chapter 5: Testing with Docker

Listing 5.11: Editing our website
$ vi $PWD/website/index.html

We'll change the title from:

Listing 5.12: Old title
This is a test website

To:

Listing 5.13: New title
This is a test website for Docker

Let's refresh our browser and see what we've got now.

Figure 5.2: Browsing the edited Nginx test site.

We can see that our website has been updated. Obviously, this is an incredibly
simple example of editing a website, but you can see how you could easily do
so much more. More importantly, you're testing a site that reflects production
reality. You can now have containers for each type of production web-serving
environment (e.g., Apache, Nginx), for running varying versions of development
frameworks like PHP or Ruby on Rails, or for database back ends, etc.

Version: v1.2.0 (fba92ef) 126



Chapter 5: Testing with Docker

Using Docker to build and test a web application
Now let's look at a more complex example of testing a larger web application.
We're going to test a Sinatra-based web application instead of a static website and
then develop that application whilst testing in Docker. Our application is going
to take incoming parameters and output them as a JSON hash.

Building our Sinatra application
Let's start with a Dockerfile to build the basic image that we will use to develop
our Sinatra web application.

Listing 5.14: Dockerfile for web application testing
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01

RUN apt-get update
RUN apt-get -y install ruby ruby-dev build-essential redis-tools
RUN gem install --no-rdoc --no-ri sinatra json redis

RUN mkdir -p /opt/webapp

EXPOSE 4567

CMD [ "/opt/webapp/bin/webapp" ]

You can see that we've created another Ubuntu-based image, installed Ruby and
RubyGems, and then used the gem binary to install the sinatra, json, and redis
gems. We've also created a directory to hold our new web application and exposed
the default WEBrick port of 4567.
Finally, we've specified a CMD of /opt/webapp/bin/webapp, which will be the bi-
nary that launches our web application.

Version: v1.2.0 (fba92ef) 127



Chapter 5: Testing with Docker

Let's build this new image now using the docker build command.

Listing 5.15: Building our new Sinatra image
$ sudo docker build -t jamtur01/sinatra .

Creating our Sinatra container
We've built our image. Let's now download our Sinatra web application's source
code. You can find the code for this Sinatra application here or in the GitHub
repository. The application is made up of the bin and lib directories from the
webapp directory.
Let's download it now.

Listing 5.16: Download our Sinatra web application
$ wget --cut-dirs=3 -nH -r --no-parent http://dockerbook.com/code↩
/5/sinatra/webapp/

$ ls -l webapp
. . .

We also need to ensure that the webapp/bin/webapp is executable prior to using it
using the chmod command.

Listing 5.17: Making webapp/bin/webapp executable
$ chmod +x $PWD/webapp/bin/webapp

Now let's create a new container from our image using the docker run command.

Listing 5.18: Launching our first Sinatra container
$ sudo docker run -d -p 4567 --name webapp \
-v $PWD/webapp:/opt/webapp jamtur01/sinatra

Here we've launched a new container from our jamtur01/sinatra image, called
webapp. We've specified a new volume, $PWD/webapp, that holds our new Sina-

Version: v1.2.0 (fba92ef) 128

http://dockerbook.com/code/5/sinatra/webapp/
https://github.com/jamtur01/dockerbook-code
https://github.com/jamtur01/dockerbook-code


Chapter 5: Testing with Docker

tra web application, and we've mounted it to the directory we created in the
Dockerfile: /opt/webapp.
We've not provided a command to run on the command line; instead, we provided
the command in the CMD in the Dockerfile of the image.

Listing 5.19: The CMD instruction in our Dockerfile
. . .
CMD [ "/opt/webapp/bin/webapp" ]
. . .

This command will be executed when a container is launched from this image.
We can also use the docker logs command to see what happened when our com-
mand was executed.

Listing 5.20: Checking the logs of our Sinatra container
$ sudo docker logs webapp
[2013-08-05 02:22:14] INFO WEBrick 1.3.1
[2013-08-05 02:22:14] INFO ruby 1.8.7 (2011-06-30) [x86_64-linux↩
]

== Sinatra/1.4.3 has taken the stage on 4567 for development with↩
backup from WEBrick

[2013-08-05 02:22:14] INFO WEBrick::HTTPServer#start: pid=1 port↩
=4567

By adding the -f flag to the docker logs command, you can get similar behavior
to the tail -f command and continuously stream new output from the STDERR
and STDOUT of the container.

Listing 5.21: Tailing the logs of our Sinatra container
$ sudo docker logs -f webapp
. . .

We can also see the running processes of our Sinatra Docker container using the
docker top command.

Version: v1.2.0 (fba92ef) 129



Chapter 5: Testing with Docker

Listing 5.22: Using docker top to list our Sinatra processes
$ sudo docker top webapp
UID PID PPID C STIME TTY TIME CMD
root 21506 15332 0 20:26 ? 00:00:00 /usr/bin/ruby /opt/↩
webapp/bin/webapp

We can see from the logs that Sinatra has been launched and the WEBrick server
is waiting on port 4567 in the container for us to test our application. Let's check
to which port on our local host that port is mapped:

Listing 5.23: Checking the Sinatra port mapping
$ sudo docker port webapp 4567
0.0.0.0:49160

Right now, our basic Sinatra application doesn't do much. As we saw above, it
just takes incoming parameters, turns them into JSON, and then outputs them.
We can now use the curl command to test our application.

Listing 5.24: Testing our Sinatra application
$ curl -i -H 'Accept: application/json' \
-d 'name=Foo&status=Bar' http://localhost:49160/json
HTTP/1.1 200 OK
X-Content-Type-Options: nosniff
Content-Length: 29
X-Frame-Options: SAMEORIGIN
Connection: Keep-Alive
Date: Mon, 05 Aug 2013 02:22:21 GMT
Content-Type: text/html;charset=utf-8
Server: WEBrick/1.3.1 (Ruby/1.8.7/2011-06-30)
X-Xss-Protection: 1; mode=block
{"name":"Foo","status":"Bar"}

We can see that we've passed some parameters to our Sinatra application and seen
them returned to us as a JSON hash: {"name":"Foo","status":"Bar"}.

Version: v1.2.0 (fba92ef) 130



Chapter 5: Testing with Docker

Neat! But let's see if we can extend our example application container to an actual
application stack by adding a service running in another container.

Building a Redis image and container
We're going to extend our Sinatra application now by adding a Redis back end
and storing our incoming parameters in a Redis database. To do this, we're going
to build a whole new image and container to run our Redis database, then we'll
make use of Docker's capabilities to connect the two containers.
To build our Redis database, we're going to create a new image. We start with a
new Dockerfile on which Redis will run.

Listing 5.25: Dockerfile for Redis image
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01
RUN apt-get update
RUN apt-get -y install redis-server redis-tools
EXPOSE 6379
ENTRYPOINT [ "/usr/bin/redis-server" ]
CMD []

We've specified the installation of the Redis server, exposed port 6379, and speci-
fied an ENTRYPOINT that will launch that Redis server. Let's now build that image
and call it ``.

Listing 5.26: Building our Redis image
$ sudo docker build -t jamtur01/redis .

Now let's create a container from our new image.

Listing 5.27: Launching a Redis container
$ sudo docker run -d -p 6379 --name redis jamtur01/redis
0a206261f079

Version: v1.2.0 (fba92ef) 131



Chapter 5: Testing with Docker

We can see we've launched a new container named redis from our jamtur01/↩
redis image. Note that we've specified the -p flag to expose port 6379. Let's see
what port it's running on.

Listing 5.28: Launching a Redis container
$ sudo docker port redis 6379
0.0.0.0:49161

We can see our Redis port is exposed on port 49161. Let's try to connect to that
Redis instance now.
We'll need to install the Redis client locally to do the test. This is usually the
redis-tools package.

Listing 5.29: Installing the redis-tools package on Ubuntu
$ sudo apt-get -y install redis-tools

Then we can use the redis-cli command to check our Redis server.

Listing 5.30: Testing our Redis connection
$ redis-cli -h 127.0.0.1 -p 49161
redis 127.0.0.1:49161>

Here we've connected the Redis client to 127.0.0.1 on port 49161 and verified
that our Redis server is working.

Connecting to the Redis container
Let's now update our Sinatra application to connect to Redis and store our incom-
ing parameters. In order to do that, we're going to need to be able to talk to the
Redis server. There are several ways we could do this; let's explore and see the
pros and cons of each.
The first method involves Docker's own network stack. So far, we've seen Docker
containers exposing ports and binding interfaces so that container services are
exposed on the local Docker host's external network (e.g., binding port 80 inside

Version: v1.2.0 (fba92ef) 132



Chapter 5: Testing with Docker

a container to a high port on the local host). In addition to this capability, Docker
has a facet we haven't yet seen: internal networking.
Every Docker container is assigned an IP address, provided through an interface
created when we installed Docker. That interface is called docker0. Let's look at
that interface on our Docker host now.

Listing 5.31: The docker0 interface
$ ip a show docker0
4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ↩
noqueue state UP

link/ether 06:41:69:71:00:ba brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global docker0
inet6 fe80::1cb3:6eff:fee2:2df1/64 scope link
valid_lft forever preferred_lft forever

. . .

We can see that the docker0 interface has an RFC1918 private IP address in the
172.16-172.30 range. This address, 172.17.42.1, will be the gateway address for
the Docker network and all our Docker containers.

TIP Docker will default to 172.17.x.x as a subnet unless that subnet is already
in use, in which case it will try to acquire another in the 172.16-172.30 ranges.

The docker0 interface is a virtual Ethernet bridge that connects our containers and
the local host network. If we look further at the other interfaces on our Docker
host, we'll find a series of interfaces starting with veth.

Listing 5.32: The veth interfaces
vethec6a Link encap:Ethernet HWaddr 86:e1:95:da:e2:5a

inet6 addr: fe80::84e1:95ff:feda:e25a/64 Scope:Link
. . .

Every time Docker creates a container, it creates a pair of peer interfaces that are

Version: v1.2.0 (fba92ef) 133



Chapter 5: Testing with Docker

like opposite ends of a pipe (i.e., a packet send on one will be received on the
other). It gives one of the peers to the container to become its eth0 interface and
keeps the other peer, with a unique name like vethec6a, out on the host machine.
You can think of a veth interface as one end of a virtual network cable. One end is
plugged into the docker0 bridge, and the other end is plugged into the container.
By binding every veth* interface to the docker0 bridge, Docker creates a virtual
subnet shared between the host machine and every Docker container.
Let's look inside a container now and see the other end of this pipe.

Listing 5.33: The eth0 interface in a container
$ sudo docker run -t -i ubuntu /bin/bash
root@b9107458f16a:/# ip a show eth0
1483: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ↩
state UP group default qlen 1000

link/ether f2:1f:28:de:ee:a7 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.29/16 scope global eth0
inet6 fe80::f01f:28ff:fede:eea7/64 scope link
valid_lft forever preferred_lft forever

We can see that Docker has assigned an IP address, 172.17.0.29, for our container
that will be peered with a virtual interface on the host side, allowing communica-
tion between the host network and the container.
Let's trace a route out of our container and see this now.

Version: v1.2.0 (fba92ef) 134



Chapter 5: Testing with Docker

Listing 5.34: Tracing a route out of our container
root@b9107458f16a:/# apt-get -yqq update && apt-get install -yqq ↩
traceroute

. . .
root@b9107458f16a:/# traceroute google.com
traceroute to google.com (74.125.228.78), 30 hops max, 60 byte ↩
packets
1 172.17.42.1 (172.17.42.1) 0.078 ms 0.026 ms 0.024 ms
. . .
15 iad23s07-in-f14.1e100.net (74.125.228.78) 32.272 ms 28.050 ↩
ms 25.662 ms

We can see that the next hop from our container is the docker0 interface gateway
IP 172.17.42.1 on the host network.
But there's one other piece of Docker networking that enables this connectivity:
firewall rules and NAT configuration allow Docker to route between containers
and the host network. Let's look at the IPTables NAT configuration on our Docker
host.

Version: v1.2.0 (fba92ef) 135



Chapter 5: Testing with Docker

Listing 5.35: Docker iptables and NAT
$ sudo iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE match dst-↩
type LOCAL

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 !127.0.0.0/8 ADDRTYPE match dst-↩
type LOCAL

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 !172.17.0.0/16

Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49161 to↩
:172.17.0.18:6379

Here we have several interesting IPTables rules. Firstly, we can note that there
is no default access into our containers. We specifically have to open up ports to
communicate to them from the host network. We can see one example of this in
the DNAT, or destination NAT, rule that routes traffic from our container to port
49161 on the Docker host.

TIP To learn more about advanced networking configuration for Docker, this
article is useful.

Version: v1.2.0 (fba92ef) 136

https://docs.docker.com/articles/networking/
https://docs.docker.com/articles/networking/


Chapter 5: Testing with Docker

Our Redis connection
Let's examine our new Redis container and see its networking configuration using
the docker inspect command.

Listing 5.36: Redis container's networking configuration
$ sudo docker inspect redis
. . .

"NetworkSettings": {
"Bridge": "docker0",
"Gateway": "172.17.42.1",
"IPAddress": "172.17.0.18",
"IPPrefixLen": 16,
"PortMapping": null,
"Ports": {

"6379/tcp": [
{

"HostIp": "0.0.0.0",
"HostPort": "49161"

}
]

}
},

. . .

The docker inspect command shows the details of a Docker container, including
its configuration and networking. We've truncated much of this information in
the example above and only shown the networking configuration. We could also
use the -f flag to only acquire the IP address.

Listing 5.37: Finding the Redis container's IP address
$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.18

We can see that the container has an IP address of 172.17.0.18 and uses the

Version: v1.2.0 (fba92ef) 137



Chapter 5: Testing with Docker

gateway address of the docker0 interface. We can also see that the 6379 port is
mapped to port 49161 on the local host, but, because we're on the local Docker host,
we don't have to use that port mapping. We can instead use the 172.17.0.18↩
address to communicate with the Redis server on port 6379 directly.

Listing 5.38: Talking directly to the Redis container
$ redis-cli -h 172.17.0.18
redis 172.17.0.18:6379>

NOTE Docker binds exposed ports on all interfaces by default; therefore, the
Redis server will also be available on the localhost or 127.0.0.1.

So, while this initially looks like it might be a good solution for connecting our
containers together, sadly, this approach has two big rough edges: Firstly, we'd
need to hard-code the IP address of our Redis container into our applications.
Secondly, if we restart the container, Docker changes the IP address. Let's see this
now using the docker restart command (we'll get the same result if we kill our
container using the docker kill command).

Listing 5.39: Restarting our Redis container
$ sudo docker restart redis

Let's inspect its IP address.

Listing 5.40: Finding the restarted Redis container's IP address
$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.19

We can see that our new Redis container has a new IP address, 172.17.0.19↩
, which means that if we'd hard-coded our Sinatra application, it would no longer
be able to connect to the Redis database. That's not very helpful.
So what do we do instead? Thankfully, Docker comes with a useful feature called

Version: v1.2.0 (fba92ef) 138



Chapter 5: Testing with Docker

links that allows us to link together one or more Docker containers and have them
communicate.

Linking Docker containers
Linking one container to another is a simple process involving container names.
Let's start by creating a new Redis container (or we could reuse the one we created
earlier).

Listing 5.41: Starting another Redis container
$ sudo docker run -d --name redis jamtur01/redis

TIP Remember that container names are unique: if you recreate the container,
you will need to delete the old redis container using the docker rm command
before you can create another container called redis.

Here we've launched a Redis instance in our new container. We've named the new
container redis using the --name flag.

NOTE You can also see that we've not exposed any ports on the container. The
"why" of this will become clear shortly.

Now let's launch a container with our web application in it and link it to our new
Redis container.

Version: v1.2.0 (fba92ef) 139



Chapter 5: Testing with Docker

Listing 5.42: Linking our Redis container
$ sudo docker run -p 4567 \
--name webapp --link redis:db -t -i \
-v $PWD/webapp:/opt/webapp jamtur01/sinatra \
/bin/bash
root@811bd6d588cb:/#

TIP You'll have to stop and remove any previous webapp containers you have
running with docker rm.

There's a lot going on in this command, so let's break it down. Firstly, we're expos-
ing port 4567 using the -p flag so we can access our web application externally.
We've also named our container webapp using the --name flag and mounted our
web application as a volume using the -v flag.
This time, however, we've used a new flag called --link. The --link flag cre-
ates a parent-child link between two containers. The flag takes two arguments:
the container name to link and an alias for the link. In this case, we're creating a
child relationship with the redis container with an alias of db. The alias allows us
to consistently access the exposed information without needing to be concerned
about the underlying container name. The link gives the parent container the abil-
ity to communicate with the child container and shares some connection details
with it to help you configure applications to make use of the link.
We also get a security-related benefit from this linkage. You'll note that when
we launched our Redis container, we didn't expose the Redis port with the -↩
p flag. We don't need to. By linking the containers together, we're allowing the
parent container to communicate to any open ports on the child container (i.e., our
parent webapp container can connect to port 6379 on our child redis container).
But even better, no other container can connect to this port. Given that the port
is not exposed to the local host, we now have a very strong security model for
limiting the attack surface and network exposure of a containerized application.

Version: v1.2.0 (fba92ef) 140



Chapter 5: Testing with Docker

TIP If you wish, for security reasons (for example), you can force Docker to only
allow communication between containers if a link exists. To do this, you can start
the Docker daemon with the --icc=false flag. This turns off communications
between all containers unless a link exists.

You can also link multiple containers together. For example, if we wanted to
use our Redis instance for multiple web applications, we could link each web
application container to the same redis container.

Listing 5.43: Linking our Redis container
$ sudo docker run -p 4567 --name webapp2 --link redis:db ...
. . .
$ sudo docker run -p 4567 --name webapp3 --link redis:db ...
. . .

TIP Container linking currently only works on a single Docker host. You can't
link between containers on separate Docker hosts.

Finally, instead of running the container as a daemon, we've launched a shell.
We've done this so we can see how our containers are now linked. Docker links
populate information about the parent container in two places:

• The /etc/hosts file.
• Environmental variables that contain connection information.

Let's look first at the /etc/hosts file.

Version: v1.2.0 (fba92ef) 141



Chapter 5: Testing with Docker

Listing 5.44: The webapp's /etc/hosts file
root@811bd6d588cb:/# cat /etc/hosts
172.17.0.33 811bd6d588cb
. . .
172.17.0.31 db

We can see that we have some useful entries in here. The first one is the container's
own IP address and hostname (here, the short ID of the container). The second
entry has been generated by our link; it's the IP address of the redis container
with the hostname db derived from the link alias. Let's try and ping that container
now.

TIP The container's hostname doesn't have to be the short ID. You can use the
-h or --hostname flag with the docker run command to set a specific hostname
for the container.

Listing 5.45: Pinging the db container
root@811bd6d588cb:/# ping db
PING db (172.17.0.31) 56(84) bytes of data.
64 bytes from db (172.17.0.31): icmp_seq=1 ttl=64 time=0.623 ms
64 bytes from db (172.17.0.31): icmp_seq=2 ttl=64 time=0.132 ms
64 bytes from db (172.17.0.31): icmp_seq=3 ttl=64 time=0.095 ms
64 bytes from db (172.17.0.31): icmp_seq=4 ttl=64 time=0.155 ms
. . .

We have connectivity to our Redis database, but before we make use of it, let's
look at the other connection information contained in our environment variables.
Let's run the env command to see the environment variables.

Version: v1.2.0 (fba92ef) 142



Chapter 5: Testing with Docker

Listing 5.46: Showing linked environment variables
root@811bd6d588cb:/# env
HOSTNAME=811bd6d588cb
DB_NAME=/webapp/db
DB_PORT_6379_TCP_PORT=6379
DB_PORT=tcp://172.17.0.31:6379
DB_PORT_6379_TCP=tcp://172.17.0.31:6379
DB_ENV_REFRESHED_AT=2014-06-01
DB_PORT_6379_TCP_ADDR=172.17.0.31
DB_PORT_6379_TCP_PROTO=tcp
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
REFRESHED_AT=2014-06-01
. . .

We can see a bunch of environment variables here, including some prefixed with
DB. Docker automatically creates these variables when we link the webapp and
redis containers. They start with DB because that is the alias we used when we
created our link.
The automatically created environment variables include a variety of information:

• The name of the child container.
• The protocol, IP, and port of the service running in the container.
• Specific protocols, IP, and ports of various services running in the container.
• The values of any Docker-specified environment variables on the container.

The precise variables will vary from container to container depending on what is
configured on that container (e.g., what has been defined by the ENV and EXPOSE
instructions in the container's Dockerfile). More importantly, they include infor-
mation we can use inside our applications to consistently link between containers.

Using our container link to communicate
So how can we make use of this link? Let's look at our Sinatra application and add
some connection information for Redis. There are two ways we could connect the

Version: v1.2.0 (fba92ef) 143



Chapter 5: Testing with Docker

application to Redis:

• Using some of the connection information in our environment variables.
• Using DNS and the /etc/hosts information.

Let's look at the first method by seeing how our web app's lib/app.rb file might
look using our new environment variables.

Listing 5.47: The linked via env variables Redis connection
require 'uri'
. . .
uri=URI.parse(ENV['DB_PORT'])
redis = Redis.new(:host => uri.host, :port => uri.port)
. . .

Here, we are parsing the DB_PORT environment variable using the Ruby URI mod-
ule. We're then using the resulting host and port output to configure our Redis
connection. Our application can now use this connection information to find Re-
dis in a linked container. This abstracts away the need to hard-code an IP address
and port to provide connectivity. It's a very crude form of service discovery.
Alternatively, we could use local DNS.

TIP You can also configure the DNS of your individual containers using the
--dns and --dns-search flags on the docker run command. This allows you to
set the local DNS resolution path and search domains. You can read about this
here. In the absence of both of these flags, Docker will set DNS resolution to
match that of the Docker host. You can see the DNS resolution configuration in
the /etc/resolv.conf file.

Listing 5.48: The linked via hosts Redis connection
redis = Redis.new(:host => 'db', :port => '6379')

Version: v1.2.0 (fba92ef) 144

https://docs.docker.com/articles/networking/


Chapter 5: Testing with Docker

NOTE You can see and download our updated Redis-enabled Sinatra applica-
tion here or in the GitHub repository. You'll need to download or edit the existing
code for the example to work.

This will cause our application to look up the host db locally; it will find the
entry in the /etc/hosts file and resolve the host to the correct IP address, again
abstracting away the need to hard-code an IP address and port.
Let's try it with the DNS local resolution by starting our application inside the
container.

Listing 5.49: Starting the Redis-enabled Sinatra application
root@811bd6d588cb:/# nohup /opt/webapp/bin/webapp &
nohup: ignoring input and appending output to 'nohup.out'

Here we've backgrounded our Sinatra application and started it. Now let's test our
application from the Docker host using the curl command again.

Listing 5.50: Testing our Redis-enabled Sinatra application
$ curl -i -H 'Accept: application/json' \
-d 'name=Foo&status=Bar' http://localhost:49161/json
HTTP/1.1 200 OK
X-Content-Type-Options: nosniff
Content-Length: 29
X-Frame-Options: SAMEORIGIN
Connection: Keep-Alive
Date: Mon, 01 Jun 2014 02:22:21 GMT
Content-Type: text/html;charset=utf-8
Server: WEBrick/1.3.1 (Ruby/1.8.7/2011-06-30)
X-Xss-Protection: 1; mode=block
{"name":"Foo","status":"Bar"}

And now let's confirm that our Redis instance has received the update.

Version: v1.2.0 (fba92ef) 145

http://dockerbook.com/code/5/sinatra/webapp_redis/
https://github.com/jamtur01/dockerbook-code


Chapter 5: Testing with Docker

Listing 5.51: Confirming Redis contains data
$ curl -i http://localhost:49161/json
"[{\"name\":\"Foo\",\"status\":\"Bar\"}]"

Here we've connected to our application, which has connected to Redis, checked
a list of keys to find that we have a key called params, and then queried that key
to see that our parameters (name=Foo and status=Bar) have both been stored in
Redis. Our application works!
We now have a fully functional representation of our web application stack con-
sisting of:

• A web server container running Sinatra.
• A Redis database container.
• A secure connection between the two containers.

You can see how easy it would be to extend this concept to provide any number
of applications stacks and manage complex local development with them, like:

• Wordpress, HTML, CSS, JavaScript.
• Ruby on Rails.
• Django and Flask.
• Node.js.
• Play!
• Or any other framework that you like!

This way you can build, replicate, and iterate on production applications, even
complex multi-tier applications, in your local environment.

Using Docker for continuous integration
Up until now, all our testing examples have been very local, single developer-
centric examples (i.e., how a local developer might make use of Docker to test a

Version: v1.2.0 (fba92ef) 146



Chapter 5: Testing with Docker

local website or application). Let's look at using Docker's capabilities in a multi-
developer continuous integration testing scenario.
Docker excels at quickly generating and disposing of one or multiple containers.
There's an obvious synergy with Docker's capabilities and the concept of continu-
ous integration testing. Often in a testing scenario you need to install software or
deploy multiple hosts frequently, run your tests, and then clean up the hosts to be
ready to run again.
In a continuous integration environment, you might need these installation steps
and hosts multiple times a day. This adds a considerable build and configuration
overhead to your testing lifecycle. Package and installation steps can also be time-
consuming and annoying, especially if requirements change frequently or steps
require complex or time-consuming processes to clean up or revert.
Docker makes the deployment and cleanup of these steps and hosts cheap. To
demonstrate this, we're going to build a testing pipeline in stages using Jenkins
CI: Firstly, we're going to build a Jenkins server that also runs Docker. To make
it even more interesting, we're going to be very recursive and run Docker INSIDE
Docker. Turtles all the way down!

TIP You can read more about Docker-in-Docker here.

Once we've got Jenkins running, we'll demonstrate a basic single-container test
run. Finally, we'll look at a multi-container test scenario.

TIP There are a number of continuous integration tool alternatives to Jenkins,
including Strider and Drone.io, which actually makes use of Docker.

Version: v1.2.0 (fba92ef) 147

http://en.wikipedia.org/wiki/Continuous_integration
http://jenkins-ci.org/
http://jenkins-ci.org/
https://github.com/jpetazzo/dind
http://stridercd.com/
https://drone.io/


Chapter 5: Testing with Docker

Build a Jenkins and Docker server
To provide our Jenkins server, we're going to build an Ubuntu 14.04 image from
a Dockerfile that both installs Jenkins and Docker. Let's take a look at that
Dockerfile now.

Version: v1.2.0 (fba92ef) 148



Chapter 5: Testing with Docker

Listing 5.52: Jenkins and Docker Dockerfile
FROM ubuntu:14.04
MAINTAINER james@example.com
ENV REFRESHED_AT 2014-06-01

RUN apt-get update -qq && apt-get install -qqy curl
RUN curl https://get.docker.io/gpg | apt-key add -
RUN echo deb http://get.docker.io/ubuntu docker main > /etc/apt/↩
sources.list.d/docker.list

RUN apt-get update -qq && apt-get install -qqy iptables ca-↩
certificates lxc openjdk-6-jdk git-core lxc-docker

ENV JENKINS_HOME /opt/jenkins/data
ENV JENKINS_MIRROR http://mirrors.jenkins-ci.org

RUN mkdir -p $JENKINS_HOME/plugins
RUN curl -sf -o /opt/jenkins/jenkins.war -L $JENKINS_MIRROR/war-↩
stable/latest/jenkins.war

RUN for plugin in chucknorris greenballs scm-api git-client git ↩
ws-cleanup ;\

do curl -sf -o $JENKINS_HOME/plugins/${plugin}.hpi \
-L $JENKINS_MIRROR/plugins/${plugin}/latest/${plugin}.hpi ↩
; done

ADD ./dockerjenkins.sh /usr/local/bin/dockerjenkins.sh
RUN chmod +x /usr/local/bin/dockerjenkins.sh

VOLUME /var/lib/docker

EXPOSE 8080

ENTRYPOINT [ "/usr/local/bin/dockerjenkins.sh" ]

Version: v1.2.0 (fba92ef) 149



Chapter 5: Testing with Docker

We can see that our Dockerfile inherits from the ubuntu:14.04 image and then
does a lot of other stuff. Indeed, it is probably the most complex Dockerfilewe've
seen so far. Let's walk through what it does.
Firstly, it sets up the Ubuntu and Docker APT repositories we need and adds the
Docker repository GPG key. We then update our package list and install the pack-
ages required to run both Docker and Jenkins. We've followed the same instruc-
tions that we used in Chapter 2 and added some additional packages we need for
Jenkins.
Next, we've created a directory, /opt/jenkins, and downloaded the latest version
of Jenkins into it. We also need some Jenkins plugins. Plugins provide support
for additional capabilities for Jenkins (e.g., for Git version control).
We've also set the JENKINS_HOME and JENKINS_MIRROR environment variables to the
location of our Jenkins data directory and mirror site using the ENV instruction.
We've then specified a VOLUME instruction. Remember, the VOLUME instruction adds
a volume from the host launching the container. In this case, we're 'faking out'
Docker and specifying /var/lib/docker as a volume. This is because the /var/↩
lib/docker directory is where Docker stores its containers. This location must be
a real filesystem rather than a mount point like the layers in a Docker image.
So, using the VOLUME instruction, we tell the Docker daemon that we're going to be
running inside our container to use the host's filesystem for its container storage.
Hence, the /var/lib/docker directory of the nested Docker will live somewhere
in the /var/lib/docker/volumes directory on the host system.
We've exposed the Jenkin's default port of 8080.
Lastly we've specified a shell script that will run when our container is launched.
This shell script (specified as an ENTRYPOINT instruction) helps configure Docker on
our host, enables Docker in Docker, starts the Docker daemon, and then launches
Jenkins. There is a bit more information about why the shell script does what it
does to allow Docker-in-Docker here.

NOTE The Dockerfile and the shell script are available as part of this book's
code here or in the GitHub repository.

Version: v1.2.0 (fba92ef) 150

http://dockerbook.com/code/5/jenkins/dockerjenkins.sh
https://github.com/jpetazzo/dind
http://dockerbook.com/code/5/jenkins
https://github.com/jamtur01/dockerbook-code


Chapter 5: Testing with Docker

Now that we have our Dockerfile, let's build a new image using the docker ↩
build command.

Listing 5.53: Building our Docker-Jenkins image
$ sudo docker build -t jamtur01/dockerjenkins .

We've called our new image, somewhat unoriginally, jamtur01/dockerjenkins.
We can now create a container from this image using the docker run command.

Listing 5.54: Running our Docker-Jenkins image
$ sudo docker run -p 8080:8080 --name jenkins --privileged \
-d jamtur01/dockerjenkins
190f5c6333576f017257b3348cf64dfcd370ac10721c1150986ab1db3e3221ff8

We can see that we've used one new flag, --privileged, to run this container.
The --privileged flag is special and enables Docker's privileged mode. Privileged
mode allows us to run containers with (almost) all the capabilities of their host
machine, including kernel features and device access. This enables the special
magic that allows us to run Docker inside Docker.

WARNING Running Docker in --privileged mode is a security risk. Con-
tainers with this enabled have root-level access to the Docker host. Ensure you
appropriately secure your Docker host and only use a Docker host that is an ap-
propriate trust domain or only runs containers with similar trust profiles.

We can also see that we've used the -p flag to expose port 8080 on port 8080 on
the local host, which would normally be poor practice, but we're only going to
run one Jenkins server.
We can see that our new container, jenkins, has been started. Let's check out its
logs.

Version: v1.2.0 (fba92ef) 151



Chapter 5: Testing with Docker

Listing 5.55: Checking the Docker Jenkins container logs
$ sudo docker logs jenkins
Running from: /opt/jenkins/jenkins.war
webroot: EnvVars.masterEnvVars.get("JENKINS_HOME")
Sep 8, 2013 12:53:01 AM winstone.Logger logInternal
INFO: Beginning extraction from war file
. . .
INFO: HTTP Listener started: port=8080
. . .

You can keep checking the logs, or run docker logs with the -f flag, until you
see a message similar to:

Listing 5.56: Checking that is Jenkins up and running
INFO: Jenkins is fully up and running

Excellent. Our Jenkins server should now be available in your browser on port
8080, as we can see here:

Figure 5.3: Browsing the Jenkins server.

Version: v1.2.0 (fba92ef) 152



Chapter 5: Testing with Docker

Create a new Jenkins job
Now that we have a running Jenkins server, let's continue by creating a Jenkins
job to run. To do this, we'll click the create new jobs link, which will open up
the New Job wizard.

Figure 5.4: Creating a new Jenkins job.

Let's name our new job Docker_test_job, select a job type of Build a free-↩
style software project, and click OK to continue to the next screen.
Now let's fill in a few sections. We'll start with a description of the job. Then
click the Advanced. . . button under the Advanced Project Options, tick the
Use Custom workspace radio button, and specify /tmp/jenkins-buildenv/${↩
JOB_NAME}/workspace as the Directory. This is the workspace in which our Jenk-
ins job is going to run.
Under Source Code Management, select Git and specify the following test reposi-
tory: https://github.com/jamtur01/docker-jenkins-sample.git. This is a sim-
ple repository containing some Ruby-based RSpec tests.

Version: v1.2.0 (fba92ef) 153



Chapter 5: Testing with Docker

Figure 5.5: Jenkins job details part 1.

Now we'll scroll down and update a few more fields. First, we'll add a build step
by clicking the Add Build Step button and selecting Execute shell. Let's specify
this shell script that will launch our tests and Docker.

Version: v1.2.0 (fba92ef) 154



Chapter 5: Testing with Docker

Listing 5.57: The Docker shell script for Jenkins jobs
# Build the image to be used for this job.
IMAGE=$(docker build . | tail -1 | awk '{ print $NF }')

# Build the directory to be mounted into Docker.
MNT="$WORKSPACE/.."

# Execute the build inside Docker.
CONTAINER=$(docker run -d -v "$MNT:/opt/project" $IMAGE /bin/bash↩

-c 'cd /opt/project/workspace && rake spec')

# Attach to the container so that we can see the output.
docker attach $CONTAINER

# Get its exit code as soon as the container stops.
RC=$(docker wait $CONTAINER)

# Delete the container we've just used.
docker rm $CONTAINER

# Exit with the same value as that with which the process exited.
exit $RC

So what does this script do? Firstly, it will create a new Docker image using a
Dockerfile contained in the Git repository we've just specified. This Dockerfile
provides the test environment in which we wish to execute. Let's take a quick look
at it now.

Version: v1.2.0 (fba92ef) 155



Chapter 5: Testing with Docker

Listing 5.58: The Docker test job Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01
RUN apt-get update
RUN apt-get -y install ruby rake
RUN gem install --no-rdoc --no-ri rspec ci_reporter_rspec

TIP If we add a new dependency or require another package to run our tests,
all we'll need to do is update this Dockerfile with the new requirements, and the
image will be automatically rebuilt when the tests are run.

As we can see, we're building an Ubuntu host, installing Ruby and RubyGems,
and then installing two gems: rspec and ci_reporter_rspec. This will build an
image that we can test using a typical Ruby-based application that relies on the
RSpec test framework. The ci_reporter_rspec gem allows RSpec output to be
converted to JUnit-formatted XML that Jenkins can consume. We'll see the results
of this conversion shortly.
Back to our script. We're building an image from this Dockerfile. Next, we're
creating a directory containing our Jenkins workspace (this is where the Git repos-
itory is checked out to), and it is this directory we're going to mount into our
Docker container and from which we're going to run our tests.
Next we create a container from our image and run the tests. Inside this con-
tainer, we've mounted our workspace to the /opt/project directory. We're also
executing a command that changes into this directory and executes the rake ↩
spec command which actually runs our RSpec tests.
Now we've got a container started and we've grabbed the container ID.

TIP Docker also comes with a command line option called --cidfile that cap-
tures the container's ID and stores it in a file specified in the --cidfile options,

Version: v1.2.0 (fba92ef) 156



Chapter 5: Testing with Docker

like so: --cidfile=/tmp/containerid.txt

Now we want to attach to that container to get the output from it using the
docker attach command. and then use the docker wait command. The docker↩
wait command blocks until the command the container is executing finishes and
then returns the exit code of the container. The RC variable captures the exit code
from the container when it completes.
Finally, we clean up and delete the container we've just created and exit with the
container's exit code. This should be the exit code of our test run. Jenkins relies
on this exit code to tell it if a job's tests have run successfully or failed.
Next we click the Add post-build action and add Publish JUnit test result↩
report. In the Test report XMLs, we need to specify spec/reports/*.xml; this
is the location of the ci_reporter gem's XML output, and locating it will allow
Jenkins to consume our test history and output.
Finally, we must click the Save button to save our new job.

Version: v1.2.0 (fba92ef) 157



Chapter 5: Testing with Docker

Figure 5.6: Jenkins job details part 2.

Running our Jenkins job
We now have our Jenkins job, so let's run it. We'll do this by clicking the Build↩
Now button; a job will appear in the Build History box.

Figure 5.7: Running the Jenkins job.

NOTE The first time the tests run, it'll take a little longer because Docker is
building our new image. The next time you run the tests, however, it'll be much
faster, as Docker will already have the required image prepared.

We'll click on this job to get details of the test run we're executing.

Version: v1.2.0 (fba92ef) 158



Chapter 5: Testing with Docker

Figure 5.8: The Jenkins job details.

We can click on Console Output to see the commands that have been executed as
part of the job.

Figure 5.9: The Jenkins job console output.

We can see that Jenkins has downloaded our Git repository to the workspace. We
can then execute our Shell script and build a Docker image using the docker↩
build command. Then, we'll capture the image ID and use it to build a new

Version: v1.2.0 (fba92ef) 159



Chapter 5: Testing with Docker

container using the docker run command. Running this new container executes
the RSpec tests and captures the results of the tests and the exit code. If the job
exits with an exit code of 0, then the job will be marked as successful.
You can also view the precise test results by clicking the Test Result link. This
will have captured the RSpec output of our tests in JUnit form. This is the output
that the ci_reporter gem produces and our After Build step captures.

Next steps with our Jenkins job
We can also automate our Jenkins job further by enabling SCM polling, which
triggers automatic builds when new commits are made to the repository. Similar
automation can be achieved with a post-commit hook or via a GitHub or Bitbucket
repository hook.

Summary of our Jenkins setup
We've achieved a lot so far: we've installed Jenkins, run it, and created our first
job. This Jenkins job uses Docker to create an image that we can manage and
keep updated using the Dockerfile contained in our repository. In this scenario,
not only does our infrastructure configuration live with our code, but managing
that configuration becomes a simple process. Containers are then created (from
that image) in which we then run our tests. When we're done with the tests, we
can dispose of the containers, which makes our testing fast and lightweight. It is
also easy to adapt this example to test on different platforms or using different
test frameworks for numerous languages.

TIP You could also use parameterized builds to make this job and the shell script
step more generic to suit multiple frameworks and languages.

Version: v1.2.0 (fba92ef) 160

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Configuringautomaticbuilds
https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Build


Chapter 5: Testing with Docker

Multi-configuration Jenkins
We've now seen a simple, single container build using Jenkins. What if we wanted
to test our application on multiple platforms? Let's say we'd like to test it on
Ubuntu, Debian, and CentOS. To do that, we can take advantage of a Jenkins job
type called a "multi-configuration job" that allows a matrix of test jobs to be run.
When the Jenkins multi-configuration job is run, it will spawn multiple sub-jobs
that will test varying configurations.

Create a multi-configuration job
Let's look at creating our new multi-configuration job. Click on the New Job from
the Jenkins console. We're going to name our new job Docker_matrix_job, select
Build multi-configuration project, and click OK.

Figure 5.10: Creating a multi-configuration job.

We'll see a screen that is very similar to the job creation screen we saw earlier.
Let's add a description for our job, select Git as our repository type, and spec-
ify our sample application repository: https://github.com/jamtur01/docker-↩
jenkins-sample.git.

Version: v1.2.0 (fba92ef) 161



Chapter 5: Testing with Docker

Figure 5.11: Configuring a multi-configuration job Part 1.

Next, let's scroll down and configure our multi-configuration axis. The axis is
the list of matrix elements that we're going to execute as part of the job. We'll
click the Add Axis button and select User-defined Axis. We're going to specify
an axis named OS (which will be short for operating system) and specify three
values: centos, debian, and ubuntu. When we execute our multi-configuration
job, Jenkins will look at this axis and spawn three jobs: one for each point on the
axis.
You'll also note that in the Build Environment section we've ticked Delete ↩
workspace before build starts. This option cleans up our build environment
by deleting the checked-out repository prior to initiating a new set of jobs.

Version: v1.2.0 (fba92ef) 162



Chapter 5: Testing with Docker

Figure 5.12: Configuring a multi-configuration job Part 2.

Lastly, we've specified another shell build step with a simple shell script. It's a
modification of the shell script we used earlier.

Version: v1.2.0 (fba92ef) 163



Chapter 5: Testing with Docker

Listing 5.59: Jenkins multi-configuration shell step
# Build the image to be used for this run.
cd $OS && IMAGE=$(docker build . | tail -1 | awk '{ print $NF }')

# Build the directory to be mounted into Docker.
MNT="$WORKSPACE/.."

# Execute the build inside Docker.
CONTAINER=$(docker run -d -v "$MNT:/opt/project" $IMAGE /bin/bash↩

-c "cd /opt/project/$OS && rake spec")

# Attach to the container's streams so that we can see the output↩
.

docker attach $CONTAINER

# As soon as the process exits, get its return value.
RC=$(docker wait $CONTAINER)

# Delete the container we've just used.
docker rm $CONTAINER

# Exit with the same value as that with which the process exited.
exit $RC

We can see that this script has a modification: we're changing into directories
named for each operating system for which we're executing a job. We can see
inside our test repository that we have three directories: centos, debian, and
ubuntu. Inside each directory is a different Dockerfile containing the build in-
structions for a CentOS, Debian, or Ubuntu image, respectively. This means that
each job that is started will change into the appropriate directory for the required
operating system, build an image based on that operating system, install any re-
quired prerequisites, and launch a container based on that image in which to run
our tests.
Let's look at one of these new Dockerfile examples.

Version: v1.2.0 (fba92ef) 164



Chapter 5: Testing with Docker

Listing 5.60: Our CentOS-based Dockerfile
FROM centos:latest
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01
RUN yum -y install ruby rubygems rubygem-rake
RUN gem install --no-rdoc --no-ri rspec ci_reporter_rspec

We can see that this is a CentOS-based variant of the Dockerfile we were using as
a basis of our previous job. It basically performs the same tasks as that previous
Dockerfile did, but uses the CentOS-appropriate commands like yum to install
packages.
We're also going to add a post-build action of Publish JUnit test result ↩
report and specify the location of our XML output: spec/reports/*.xml. This
will allow us to check the test result output.
Finally, we'll click Save to create our new job and save our proposed configuration.
We can now see our freshly created job and note that it includes a section called
Configurations that contains sub-jobs for each element of our axis.

Figure 5.13: Our Jenkins multi-configuration job

Version: v1.2.0 (fba92ef) 165



Chapter 5: Testing with Docker

Testing our multi-configuration job
Now let's test this new job. We can launch our new multi-configuration job by
clicking the Build Now button. When Jenkins runs, it will create a master job.
This master job will, in turn, generate three sub-jobs that execute our tests on
each of the three platforms we've chosen.

NOTE Like our previous job, it may take a little time to run the first time, as
it builds the required images in which we'll test. Once they are built, though, the
next runs should be much faster. Docker will only change the image if you update
the Dockerfile.

We can see that the master job executes first, and then each sub-job executes. Let's
look at the output of one of these sub-jobs, our new centos job.

Figure 5.14: The centos sub-job.

We can see that it has executed: the green ball tells us it executed successfully.
We can drill down into its execution to see more. To do so, click on the #1 entry
in the Build History.

Version: v1.2.0 (fba92ef) 166



Chapter 5: Testing with Docker

Figure 5.15: The centos sub-job details.

Here we can see some more details of the executed centos job. We can see that
the job has been Started by upstream project Docker_matrix_job and is build
number 1. To see the exact details of what happened during the run, we can check
the console output by clicking the Console Output link.

Figure 5.16: The centos sub-job console output.

Version: v1.2.0 (fba92ef) 167



Chapter 5: Testing with Docker

We can see that the job cloned the repository, built the required Docker image,
spawned a container from that image, and then ran the required tests. All of the
tests passed successfully (we can also check the Test Result link for the uploaded
JUnit test results if required).
We've now successfully completed a very simple, but powerful example of a multi-
platform testing job for an application.

Summary of our multi-configuration Jenkins
These examples show very simplistic implementations of Jenkins CI working with
Docker. You can enhance both of the examples shown with a lot of additional
capabilities ranging from automated, triggered builds to multi-level job matrices
using combinations of platform, architecture, and versions. Our simple Shell build
step could also be rewritten in a number of ways to make it more sophisticated or
to further support multi-container execution (e.g., to provide separate containers
for web, database, or application layers to better simulate an actual multi-tier
production application).

Other alternatives
One of the more interesting parts of the Docker ecosystem is continuous integra-
tion and continuous deployment (CI/CD). Beyond integration with existing tools
like Jenkins, we're also seeing people build their own tools and integrations on
top of Docker.

Drone
One of the more promising CI/CD tools being developed on top of Docker is Drone.
Drone is a SAAS continuous integration platform that connects to GitHub, Bit-
bucket, and Google Code repositories written in a wide variety of languages, in-
cluding Python, Node.js, Ruby, Go, and numerous others. It runs the test suites
of repositories added to it inside a Docker container.

Version: v1.2.0 (fba92ef) 168

http://drone.io


Chapter 5: Testing with Docker

Shippable
Shippable is a free, hosted continuous integration and deployment service for
GitHub and Bitbucket. It is blazing fast and lightweight, and it supports Docker
natively.

Summary
In this chapter, we've seen how to use Docker as a core part of our development
and testing workflow. We've looked at developer-centric testing with Docker on a
local workstation or virtual machine. We've also explored scaling that testing up
to a continuous integration model using Jenkins CI as our tool. We've seen how
to use Docker for both point testing and how to build distributed matrix jobs.
In the next chapter, we'll start to see how we can use Docker in production to
provide containerized, stackable, scalable, and resilient services.

Version: v1.2.0 (fba92ef) 169

https://www.shippable.com/


Chapter 6

Building services with Docker

In Chapter 5, we saw how to use Docker to facilitate better testing by using con-
tainers in our local development workflow and in a continuous integration envi-
ronment. In this chapter, we're going to explore using Docker to run production
services.
We're going to build a simple application first and then build some more complex
multi-container applications. We'll explore how to make use of Docker features
like links and volumes to combine and manage applications running in Docker.

Building our first application
The first application we're going to build is an on-demand website using the Jekyll
framework. We're going to build two images:

• An image that both installs Jekyll and the prerequisites we'll need and builds
our Jekyll site.

• An image that serves our Jekyll site via Apache.

We're going to make it on demand by creating a new Jekyll site when a new
container is launched. Our workflow is going to be:

170

http://jekyllrb.com/
http://jekyllrb.com/


Chapter 6: Building services with Docker

• Create the Jekyll base image and the Apache image (once-off).
• Create a container from our Jekyll image that holds our website source
mounted via a volume.

• Create a Docker container from our Apache image that uses the volume con-
taining the compiled site and serve that out.

• Rinse and repeat as the site needs to be updated.

You could consider this a simple way to create multiple hosted website instances.
Our implementation is very simple, but you will see how we can extend it beyond
this simple premise later in the chapter.

The Jekyll base image
Let's start creating a new Dockerfile for our first image: the Jekyll base image.
Let's create a new directory first and an empty Dockerfile.

Listing 6.1: Creating our Jekyll Dockerfile
$ mkdir jekyll
$ cd jekyll
$ vi Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.0 (fba92ef) 171



Chapter 6: Building services with Docker

Listing 6.2: Jekyll Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install ruby ruby-dev make nodejs
RUN gem install --no-rdoc --no-ri jekyll

VOLUME [ "/data/", "/var/www/html" ]
WORKDIR /data

ENTRYPOINT [ "jekyll", "build", "--destination=/var/www/html" ]

Our Dockerfile uses the template we saw in Chapter 3 as its basis. Our image
is based on Ubuntu 14.04 and installs Ruby and the prerequisites necessary to
support Jekyll. It creates two volumes using the VOLUME instruction:

• /data/, which is going to hold our new website source code.
• /var/www/html/, which is going to hold our compiled Jekyll site.

We also need to set the working directory to /data/ and specify an ENTRYPOINT↩
instruction that will automatically build any Jekyll site it finds in the /data/
working directory into the /var/www/html/ directory.

Building the Jekyll base image
With this Dockerfile, we can now build an image from which we can launch
containers. We'll do this using the docker build command.

Version: v1.2.0 (fba92ef) 172



Chapter 6: Building services with Docker

Listing 6.3: Building our Jekyll image
$ sudo docker build -t jamtur01/jekyll .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> 99ec81b80c55
Step 1 : MAINTAINER James Turnbull <james@example.com>
. . .
Step 7 : ENTRYPOINT [ "jekyll", "build" "--destination=/var/www/↩
html" ]
---> Running in 542e2de2029d
---> 79009691f408
Removing intermediate container 542e2de2029d
Successfully built 79009691f408

We can see that we've built a new image with an ID of 79009691f408 named
jamtur01/jekyll that is our new Jekyll image. We can view our new image using
the docker images command.

Listing 6.4: Viewing our new Jekyll Base image
$ sudo docker images
REPOSITORY TAG ID CREATED SIZE
jamtur01/jekyll latest 79009691f408 6 seconds ago 12.29 kB (↩
virtual 671 MB)

. . .

The Apache image
Finally, let's build our second image, an Apache server to serve out our new site.
Let's create a new directory first and an empty Dockerfile.

Version: v1.2.0 (fba92ef) 173



Chapter 6: Building services with Docker

Listing 6.5: Creating our Apache Dockerfile
$ mkdir apache
$ cd apache
$ vi Dockerfile

Now let's populate our Dockerfile.

Listing 6.6: Jekyll Apache Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install apache2

VOLUME [ "/var/www/html" ]
WORKDIR /var/www/html

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_LOCK_DIR /var/lock/apache2

RUN mkdir -p $APACHE_RUN_DIR $APACHE_LOCK_DIR $APACHE_LOG_DIR

EXPOSE 80

ENTRYPOINT [ "/usr/sbin/apache2" ]
CMD ["-D", "FOREGROUND"]

This final image is again based on Ubuntu 14.04 and installs Apache. It creates a
volume using the VOLUME instruction, /var/www/html/, which is going to hold our

Version: v1.2.0 (fba92ef) 174



Chapter 6: Building services with Docker

compiled Jekyll website. We also set /var/www/html to be our working directory.
We'll then use some ENV instructions to set some required environment variables,
create some required directories, and EXPOSE port 80. We've also specified an
ENTRYPOINT and CMD combination to run Apache by default when the container
starts.

Building the Jekyll Apache image
With this Dockerfile, we can now build an image from which we can launch
containers. We do this using the docker build command.

Listing 6.7: Building our Jekyll Apache image
$ sudo docker build -t jamtur01/apache .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> 99ec81b80c55
Step 1 : MAINTAINER James Turnbull <james@example.com>
---> Using cache
---> c444e8ee0058
. . .
Step 11 : CMD ["-D", "FOREGROUND"]
---> Running in 7aa5c127b41e
---> fc8e9135212d
Removing intermediate container 7aa5c127b41e
Successfully built fc8e9135212d

We can see that we've built a new image with an ID of fc8e9135212d named
jamtur01/apache that is our new Apache image. We can view our new image
using the docker images command.

Version: v1.2.0 (fba92ef) 175



Chapter 6: Building services with Docker

Listing 6.8: Viewing our new Jekyll Apache image
$ sudo docker images
REPOSITORY TAG ID CREATED SIZE
jamtur01/apache latest fc8e9135212d 6 seconds ago 12.29 kB (↩
virtual 671 MB)

. . .

Launching our Jekyll site
Now we've got two images:

• Jekyll - Our Jekyll image with Ruby and the prerequisites installed.
• Apache - The image that will serve our compiled website via the Apache web
server.

Let's get started on our new site by creating a new Jekyll container using the
docker run command. We're going to launch a container and build our site.
We're going to need some source code for our blog. Let's clone a sample Jekyll
blog into our $HOME directory (in my case /home/james).

Listing 6.9: Getting a sample Jekyll blog
$ cd $HOME
$ git clone https://github.com/jamtur01/james_blog.git

You can see a basic Twitter Bootstrap-enabled Jekyll blog inside this directory. If
you want to use it, you can easily update the _config.yml file and the theme to
suit your purposes.
Now let's use this sample data inside our Jekyll container.

Version: v1.2.0 (fba92ef) 176

http://getbootstrap.com/


Chapter 6: Building services with Docker

Listing 6.10: Creating a Jekyll container
$ sudo docker run -v /home/james/james_blog:/data/ \
--name james_blog \jamtur01/jekyll
Configuration file: /data/_config.yml

Source: /data
Destination: /var/www/html
Generating...

done.

We've started a new container called james_blog and mounted our james_blog↩
directory inside the container as the /data/ volume. The container has taken
this source code and built it into a compiled site stored in the /var/www/html/
directory.
So we've got a completed site, now how do we use it? This is where volumes
become a lot more interesting. When we briefly introduced volumes in Chapter
4, we discovered a bit about them. Let's revisit that.
A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

• Volumes can be shared and reused between containers.
• A container doesn't have to be running to share its volumes.
• Changes to a volume are made directly.
• Changes to a volume will not be included when you update an image.
• Volumes persist until no containers use them.

This allows you to add data (e.g., source code, a database, or other content) into
an image without committing it to the image and allows you to share that data
between containers.
Volumes live on your Docker host, in the /var/lib/docker/volumes directory.
You can identify the location of specific volumes using the docker inspect com-
mand; for example, docker inspect -f "{{ .Volumes }}".

Version: v1.2.0 (fba92ef) 177



Chapter 6: Building services with Docker

So if we want to use our compiled site in the /var/www/html/ volume from another
container, we can do so. To do this, we'll create a new container that links to this
volume.

Listing 6.11: Creating an Apache container
$ sudo docker run -d -P --volumes-from james_blog jamtur01/apache
09a570cc2267019352525079fbba9927806f782acb88213bd38dde7e2795407d

This looks like a typical docker run, except that we've used a new flag: --↩
volumes-from. The --volumes-from flag adds any volumes in the named container
to the newly created container. This means our Apache container has access to
the compiled Jekyll site in the /var/www/html volume within the james_blog↩
container we created earlier. It has that access even though the james_blog
container is not running. As you'll recall, that is one of the special properties
of volumes. The container does have to exist, though. If you had deleted the
james_blog container using the docker rm command, then the volume would be
gone.

WARNING If you delete the last container that uses a volume, the volume
will disappear. Be careful about deleting containers that might hold volumes with
data you need. We'll see how to backup a volume shortly to help you avoid this
issue.

What is the end result of building our Jekyll website? Let's see onto what port our
container has mapped our exposed port 80:

Listing 6.12: Resolving the Apache container's port
$ sudo docker port 09a570cc2267 80
0.0.0.0:49160

Now let's browse to that site on our Docker host.

Version: v1.2.0 (fba92ef) 178



Chapter 6: Building services with Docker

Figure 6.1: Our Jekyll website.

We have a running Jekyll website!

Updating our Jekyll site
Things get even more interesting when we want to update our site. Let's say we'd
like to make some changes to our Jekyll website. We're going to rename our blog
by editing the james_blog/_config.yml file.

Listing 6.13: Editing our Jekyll blog
$ vi james_blog/_config.yml

And update the title field to James' Dynamic Docker-driven Blog.
So how do we update our blog? All we need to do is start our Docker container
again with the docker start command..

Listing 6.14: Restarting our james_blog container
$ sudo docker start james_blog
james_blog

Version: v1.2.0 (fba92ef) 179



Chapter 6: Building services with Docker

It looks like nothing happened. Let's check the container's logs.

Listing 6.15: Checking the james_blog container logs
$ sudo docker logs james_blog
Configuration file: /data/_config.yml

Source: /data
Destination: /var/www/html
Generating...

done.
Configuration file: /data/_config.yml

Source: /data
Destination: /var/www/html
Generating...

done.

We can see that the Jekyll build process has been run a second time and our site
has been updated. The update has been written to our volume. Now if we browse
to the Jekyll website, we should see our update.

Figure 6.2: Our updated Jekyll website.

This all happened without having to update or restart our Apache container, be-

Version: v1.2.0 (fba92ef) 180



Chapter 6: Building services with Docker

cause the volume it was sharing was updated automatically. You can see how easy
this workflow is and how you could expand it for more complicated deployments.

Backing up our Jekyll volume
You're probably a little worried about accidentally deleting your volume (although
we can prettily easily rebuild our site using the existing process). One of the
advantages of volumes is that because they can be mounted into any container,
we can very easily create backups of them. Let's create a new container now that
backs up the /var/www/html volume.

Listing 6.16: Backing up the /var/www/html volume
$ sudo docker run --rm --volumes-from james_blog \
-v $(pwd):/backup ubuntu \
tar cvf /backup/james_blog_backup.tar /var/www/html
tar: Removing leading '/' from member names
/var/www/html/
/var/www/html/assets/
/var/www/html/assets/themes/
. . .
$ ls james_blog_backup.tar
james_blog_backup.tar

Here we've run a stock Ubuntu container and mounted the volume from
james_blog into that container. That will create the directory /var/www/html
inside the container. We've then used the -v flag to mount our current directory,
using the $(pwd) command, inside the container at /backup. Our container then
runs the command.

TIP We've also specified the --rm flag, which is useful for single-use or throw-
away containers. It automatically deletes the container after the process running
in it is ended. This is a neat way of tidying up after ourselves for containers we
only need once.

Version: v1.2.0 (fba92ef) 181



Chapter 6: Building services with Docker

Listing 6.17: Backup command
tar cvf /backup/james_blog_backup.tar /var/www/html

This will create a tarfile called james_blog_backup.tar containing the contents of
the /var/www/html directory and then exit. This process creates a backup of our
volume.
This is obviously an incredibly simple example of a backup process. You could
easily extend this to back up to storage locally or in the cloud (e.g., to Amazon S3
or to more traditional backup software like Amanda).

TIP This example could also work for a database stored in a volume or similar
data. Simply mount the volume in a fresh container, perform your backup, and
discard the container you created for the backup.

Extending our Jekyll website example
Here are some ways we could expand on our simple Jekyll website service:

• Run multiple Apache containers, all which use the same volume from the
james_blog container. Put a load balancer in front of it, and we have a web
cluster.

• Build a further image that cloned or copied a user-provided source (e.g., a
git clone) into a volume. Mount this volume into a container created from
our jamtur01/jeykll image. This would make the solution portable and
generic and would not require any local source on a host.

• With the previous expansion, you could easily build a web front end for our
service that built and deployed sites automatically from a specified source.
Then you would have your very own GitHub Pages.

Version: v1.2.0 (fba92ef) 182

http://aws.amazon.com/s3/
http://www.amanda.org/


Chapter 6: Building services with Docker

Building a Java application server with Docker
Now let's take a slightly different tack and think about Docker as an application
server and build pipeline. This time we're serving a more "enterprisey" and tra-
ditional workload: fetching and running a Java application from a WAR file in a
Tomcat server. To do this, we're going to build a two-stage Docker pipeline:

• An image that pulls down specified WAR files from a URL and stores them
in a volume.

• An image with a Tomcat server installed that runs those downloaded WAR
files.

A WAR file fetcher
Let's start by building an image to download a WAR file for us and mount it in a
volume.

Listing 6.18: Creating our fetcher Dockerfile
$ mkdir fetcher
$ cd fetcher
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.0 (fba92ef) 183



Chapter 6: Building services with Docker

Listing 6.19: Our war file fetcher
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install wget

VOLUME [ "/var/lib/tomcat7/webapps/" ]
WORKDIR /var/lib/tomcat7/webapps/

ENTRYPOINT [ "wget" ]
CMD [ "-?" ]

This incredibly simple image does one thing: it wgets whatever file from a URL
that is specified when a container is run from it and stores the file in the /var/↩
lib/tomcat7/webapps/ directory. This directory is also a volume and the working
directory for any containers. We're going to share this volume with our Tomcat
server and run its contents.
Finally, the ENTRYPOINT and CMD instructions allow our container to run when no
URL is specified; they do so by returning the wget help output when the container
is run without a URL.
Let's build this image now.

Listing 6.20: Building our fetcher image
$ sudo docker build -t jamtur01/fetcher .

Fetching a WAR file
Let's fetch an example file as a way to get started with our new image. We're going
to download the sample Apache Tomcat application from here.

Version: v1.2.0 (fba92ef) 184

https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/


Chapter 6: Building services with Docker

Listing 6.21: Fetching a war file
$ sudo docker run -t -i --name sample jamtur01/fetcher \
https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.war
--2014-06-21 06:05:19-- https://tomcat.apache.org/tomcat-7.0-doc↩
/appdev/sample/sample.war

Resolving tomcat.apache.org (tomcat.apache.org)... ↩
140.211.11.131, 192.87.106.229, 2001:610:1:80bc:192:87:106:229

Connecting to tomcat.apache.org (tomcat.apache.org)↩
|140.211.11.131|:443... connected.

HTTP request sent, awaiting response... 200 OK
Length: 4606 (4.5K)
Saving to: 'sample.war'

100%[=================================>] 4,606 --.-K/s in↩
0s

2014-06-21 06:05:19 (14.4 MB/s) - 'sample.war' saved [4606/4606]

We can see that our container has taken the provided URL and downloaded the
sample.war file. We can't see it here, but because we set the working directory in
the container, that sample.war file will have ended up in our /var/lib/tomcat7↩
/webapps/ directory.
We can find our WAR file in the /var/lib/docker directory. Let's first establish
where the volume is located using the docker inspect command.

Listing 6.22: Inspecting our Sample volume
$ sudo docker inspect -f "{{ .Volumes }}" sample
map[/var/lib/tomcat7/webapps:/var/lib/docker/vfs/dir/↩
e59cd92502663adf6e76ae57a49c0d858950cd01f32415ab6a09b44eafd8727e↩
]

We can then list this directory.

Version: v1.2.0 (fba92ef) 185



Chapter 6: Building services with Docker

Listing 6.23: Listing the volume directory
$ ls -l /var/lib/docker/vfs/dir/↩
e59cd92502663adf6e76ae57a49c0d858950cd01f32415ab6a09b44eafd8727e

total 8
-rw-r--r-- 1 root root 4606 Mar 31 2012 sample.war

Our Tomcat 7 application server
We have an image that will get us WAR files, and we have a sampleWAR file down-
loaded into a container. Let's build an image that will be the Tomcat application
server that will run our WAR file.

Listing 6.24: Creating our Tomcat 7 Dockerfile
$ mkdir tomcat7
$ cd tomcat7
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.0 (fba92ef) 186



Chapter 6: Building services with Docker

Listing 6.25: Our Tomcat 7 Application server
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install tomcat7 default-jdk

ENV CATALINA_HOME /usr/share/tomcat7
ENV CATALINA_BASE /var/lib/tomcat7
ENV CATALINA_PID /var/run/tomcat7.pid
ENV CATALINA_SH /usr/share/tomcat7/bin/catalina.sh
ENV CATALINA_TMPDIR /tmp/tomcat7-tomcat7-tmp

RUN mkdir -p $CATALINA_TMPDIR

VOLUME [ "/var/lib/tomcat7/webapps/" ]

EXPOSE 8080

ENTRYPOINT [ "/usr/share/tomcat7/bin/catalina.sh", "run" ]

Our image is pretty simple. We need to install a Java JDK and the Tomcat server.
We'll specify some environment variables Tomcat needs in order to get started,
then create a temporary directory. We'll also create a volume called /var/lib↩
/tomcat7/webapps/, expose port 8080 (the Tomcat default), and finally use an
ENTRYPOINT instruction to launch Tomcat.
Now let's build our Tomcat 7 image.

Listing 6.26: Building our Tomcat 7 image
$ sudo docker build -t jamtur01/tomcat7 .

Version: v1.2.0 (fba92ef) 187



Chapter 6: Building services with Docker

Running our WAR file
Now let's see our Tomcat server in action by creating a new Tomcat instance
running our sample application.

Listing 6.27: Creating our first Tomcat instance
$ sudo docker run --name sample_app --volumes-from sample \
-d -P jamtur01/tomcat7

This will create a new container named sample_app that reuses the volumes
from the sample container. This means our WAR file, stored in the /var/lib/↩
tomcat7/webapps/ volume, will be mounted from the sample container into the
sample_app container and then loaded by Tomcat and executed.
Let's look at our sample application in the web browser. First, we must identify
the port being exposed using the docker port command.

Listing 6.28: Identifying the Tomcat application port
sudo docker port sample_app 8080
0.0.0.0:49154

Now let's browse to our application (using the URL and port and adding the /↩
sample suffix) and see what's there.

Figure 6.3: Our Tomcat sample application.

We should see our running Tomcat application.

Version: v1.2.0 (fba92ef) 188



Chapter 6: Building services with Docker

Building on top of our Tomcat application server
Now we have the building blocks of a simple on-demand web service. Let's look
at how we might expand on this. To do so, we've built a simple Sinatra-based web
application to automatically provision Tomcat applications via a web page. We've
called this application TProv. You can see its source code here or on GitHub.
Let's install it as a demo of how you might extend this or similar examples. First,
we'll need to ensure Ruby is installed. We're going to install our TProv application
on our Docker host because our application is going to be directly interacting with
our Docker daemon, so that's where we need to install Ruby.

NOTE We could also install the TProv application inside a Docker container
using the Docker-in-Docker trick we learned in Chapter 5.

Listing 6.29: Installing Ruby
$ sudo apt-get -qqy install ruby make ruby-dev

We can then install our application from a Ruby gem.

Listing 6.30: Installing the TProv application
$ sudo gem install --no-rdoc --no-ri tprov
. . .
Successfully installed tprov-0.0.4

This will install the TProv application and some supporting gems.
We can then launch the application using the tprov binary.

Version: v1.2.0 (fba92ef) 189

http://dockerbook.com/code/6/tomcat/tprov/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/tomcat/tprov


Chapter 6: Building services with Docker

Listing 6.31: Launching the TProv application
$ sudo tprov
[2014-06-21 16:17:24] INFO WEBrick 1.3.1
[2014-06-21 16:17:24] INFO ruby 1.8.7 (2011-06-30) [x86_64-linux↩
]

== Sinatra/1.4.5 has taken the stage on 4567 for development with↩
backup from WEBrick

[2014-06-21 16:17:24] INFO WEBrick::HTTPServer#start: pid=14209 ↩
port=4567

This command has launched our application; now we can browse to the TProv
website on port 4567 of the Docker host.

Figure 6.4: Our TProv web application.

As we can see, we can specify a Tomcat application name and the URL to a Tomcat
WAR file. Let's download a sample calendar application from here and call it
Calendar.

Version: v1.2.0 (fba92ef) 190

https://gwt-examples.googlecode.com/files/Calendar.war


Chapter 6: Building services with Docker

Figure 6.5: Downloading a sample application.

We click Submit to download the WAR file, place it into a volume, run a Tomcat
server, and serve the WAR file in that volume. We can see our instance by clicking
on the List instances link.
This shows us:

• The container ID.
• The container's internal IP address.
• The interface and port it is mapped to.

Figure 6.6: Listing the Tomcat instances.

Version: v1.2.0 (fba92ef) 191



Chapter 6: Building services with Docker

Using this information, we can check the status of our application by browsing to
the mapped port. We can also use the Delete? checkbox to remove an instance.
You can see how we achieved this by looking at the TProv application code. It's a
pretty simple application that shells out to the docker binary and captures output
to run and remove containers.
You're welcome to use the TProv code or adapt or write your own 1, but its primary
purpose is to show you how easy it is to extend a simple application deployment
pipeline built with Docker.

WARNING The TProv application is pretty simple and lacks some error han-
dling and tests. It is also built on a very simple code: it was built in an hour to
demonstrate how powerful Docker can be as a tool for building applications and
services. If you find a bug with the application (or want to make it better), please
let me know with an issue or PR here.

A multi-container application stack
In our last service example, we're going full hipster by Dockerizing a Node.js ap-
plication that makes use of the Express framework with a Redis back end. We're
going to demonstrate a combination of all the Docker features we've learned over
the last two chapters, including links and volumes.
In our sample application, we're going to build a series of images that will allow
us to deploy a multi-container application:

• A Node container to serve our Node application, linked to:
• A Redis primary container to hold and cluster our state, linked to:
• Two Redis replica containers to cluster our state.
• A logging container to capture our application logs.

1Really write your own - no one but me loves my code.

Version: v1.2.0 (fba92ef) 192

https://github.com/jamtur01/dockerbook-code/blob/master/code/6/tomcat/tprov/lib/tprov/app.rb
https://github.com/jamtur01/dockerbook-code


Chapter 6: Building services with Docker

We're then going to run our Node application in a container with Redis in primary-
replica configuration in multiple containers behind it.

The Node.js image
Let's start with an image that installs Node.js, our Express application, and the
associated prerequisites.

Listing 6.32: Creating our Node.js Dockerfile
$ mkdir nodejs
$ cd nodejs
$ mkdir -p nodeapp
$ cd nodeapp
$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code↩
/master/code/6/node/nodejs/nodeapp/package.json

$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code↩
/master/code/6/node/nodejs/nodeapp/server.js

$ cd ..
$ vi Dockerfile

We've created a new directory called nodejs and then a sub-directory, nodeapp, to
hold our application code. We've then changed into this directory and downloaded
the source code for our Node.JS application.

NOTE You can get our Node application's source code here or on GitHub.

Finally we've changed back to the nodejs directory and now we can populate our
Dockerfile.

Version: v1.2.0 (fba92ef) 193

http://dockerbook.com/code/6/node/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/node/


Chapter 6: Building services with Docker

Listing 6.33: Our Node.js image
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install nodejs npm
RUN ln -s /usr/bin/nodejs /usr/bin/node
RUN mkdir -p /var/log/nodeapp

ADD nodeapp /opt/nodeapp/

WORKDIR /opt/nodeapp
RUN npm install

VOLUME [ "/var/log/nodeapp" ]

EXPOSE 3000

ENTRYPOINT [ "nodejs", "server.js" ]

Our Node.js image installs Node and makes a simple workaround of linking the
binary nodejs to node to address some backwards compatibility issues on Ubuntu.
We then add our nodeapp code into the /opt/nodeapp directory using an ADD↩
instruction. Our Node.js application is a very simple Express server and contains
both a package.json file holding the application's dependency information and
the server.js file that contains our actual application. Let's look at a subset of
that application.

Version: v1.2.0 (fba92ef) 194



Chapter 6: Building services with Docker

Listing 6.34: Our Node.js server.js application
. . .

var logFile = fs.createWriteStream('/var/log/nodeapp/nodeapp.log↩
', {flags: 'a'});

app.configure(function() {

. . .

app.use(express.session({
store: new RedisStore({

host: process.env.REDIS_HOST || 'redis_primary',
port: process.env.REDIS_PORT || 6379,
db: process.env.REDIS_DB || 0

}),
cookie: {

. . .

app.get('/', function(req, res) {
res.json({
status: "ok"

});
});

. . .

var port = process.env.HTTP_PORT || 3000;
server.listen(port);
console.log('Listening on port ' + port);

The server.js file pulls in all the dependencies and starts an Express application.
The Express app is configured to store its session information in Redis and exposes

Version: v1.2.0 (fba92ef) 195



Chapter 6: Building services with Docker

a single endpoint that returns a status message as JSON. We've configured its
connection to Redis to use a host called redis_primary with an option to override
this with an environment variable if needed.
The application will also log to the /var/log/nodeapp/nodeapp.log file and will
listen on port 3000.

NOTE You can get our Node application's source code here or on GitHub.

We've then set the working directory to /opt/nodeapp and installed the prereq-
uisites for our Node application. We've also created a volume that will hold our
Node application's logs, /var/log/nodeapp.
We expose port 3000 and finally specify an ENTRYPOINT of nodejs server.js that
will run our Node application.
Let's build our image now.

Listing 6.35: Building our Node.js image
$ sudo docker build -t jamtur01/nodejs .

The Redis base image
Let's continue with our first Redis image: a base image that will install Redis. It
is on top of this base image that we'll build our Redis primary and replica images.

Listing 6.36: Creating our Redis base Dockerfile
$ mkdir redis_base
$ cd redis_base
$ vi Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.0 (fba92ef) 196

http://dockerbook.com/code/6/node/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/node/


Chapter 6: Building services with Docker

Listing 6.37: Our Redis base image
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get install -yqq software-properties-common python-↩
software-properties

RUN add-apt-repository ppa:chris-lea/redis-server
RUN apt-get -yqq update
RUN apt-get -yqq install redis-server redis-tools

VOLUME [ "/var/lib/redis", "/var/log/redis/" ]

EXPOSE 6379
CMD []

Our Redis base image installs the latest version of Redis (from a PPA rather than
using the older packages shipped with Ubuntu), specifies two VOLUMEs (/var/lib↩
/redis and /var/log/redis), and exposes the Redis default port 6379. It doesn't
have an ENTRYPOINT or CMD because we're not actually going to run this image.
We're just going to build on top of it.
Let's build our Redis primary image now.

Listing 6.38: Building our Redis base image
$ sudo docker build -t jamtur01/redis .

The Redis primary image
Let's continue with our first Redis image: a Redis primary server.

Version: v1.2.0 (fba92ef) 197



Chapter 6: Building services with Docker

Listing 6.39: Creating our Redis primary Dockerfile
$ mkdir redis_primary
$ cd redis_primary
$ vi Dockerfile

Now let's populate our Dockerfile.

Listing 6.40: Our Redis primary image
FROM jamtur01/redis
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

ENTRYPOINT [ "redis-server", "--logfile /var/log/redis/redis-↩
server.log" ]

Our Redis primary image is based on our jamtur01/redis image and has an
ENTRYPOINT that runs the default Redis server with logging directed to /var/↩
log/redis/redis-server.log.
Let's build our Redis primary image now.

Listing 6.41: Building our Redis primary image
$ sudo docker build -t jamtur01/redis_primary .

The Redis replica image
As a complement to our Redis primary image, we're going to create an image
that runs a Redis replica to allow us to provide some redundancy to our Node.js
application.

Version: v1.2.0 (fba92ef) 198



Chapter 6: Building services with Docker

Listing 6.42: Creating our Redis replica Dockerfile
$ mkdir redis_replica
$ cd redis_replica
$ touch Dockerfile

Now let's populate our Dockerfile.

Listing 6.43: Our Redis replica image
FROM jamtur01/redis
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

ENTRYPOINT [ "redis-server", "--logfile /var/log/redis/redis-↩
replica.log", "--slaveof redis_primary 6379" ]

Again, we base our image on jamtur01/redis and specify an ENTRYPOINT that runs
the default Redis server with our logfile and the slaveof option. This configures
our primary-replica relationship and tells any containers built from this image
that they are a replica of the redis_primary host and should attempt replication
on port 6379.
Let's build our Redis replica image now.

Listing 6.44: Building our Redis replica image
$ sudo docker build -t jamtur01/redis_replica .

Creating our Redis back-end cluster
Now that we have both a Redis primary and replica image, we can build our own
Redis replication environment. Let's start by building the Redis primary container.

Version: v1.2.0 (fba92ef) 199



Chapter 6: Building services with Docker

Listing 6.45: Running the Redis primary container
$ sudo docker run -d -h redis_primary \
--name redis_primary jamtur01/redis_primary
d21659697baf56346cc5bbe8d4631f670364ffddf4863ec32ab0576e85a73d27

Here we've created a container with the docker run command from the
jamtur01/redis_primary image. We've used a new flag that we've not seen
before, -h, which sets the hostname of the container. This overrides the default
behavior (setting the hostname of the container to the short container ID) and
allows us to specify our own hostname. We'll use this to ensure that our container
is given a hostname of redis_primary and will thus be resolved that way with
local DNS. We've also specified the --name flag to ensure that our container's
name is redis_primary, too. We're going to use this for our container linking, as
we'll see shortly.
Let's see what the docker logs command can tell us about our Redis primary
container.

Listing 6.46: Our Redis primary logs
$ sudo docker logs redis_primary

Nothing? Why is that? Our Redis server is logging to a file rather than to standard
out, so we see nothing in the Docker logs. So how can we tell what's happening to
our Redis server? To do that, we can use the /var/log/redis volume we created
earlier. Let's use this volume and read some log files now.

Version: v1.2.0 (fba92ef) 200



Chapter 6: Building services with Docker

Listing 6.47: Reading our Redis primary logs
$ sudo docker run -ti --rm --volumes-from redis_primary \
ubuntu cat /var/log/redis/redis-server.log
...
[1] 25 Jun 21:45:03.074 # Server started, Redis version 2.8.12
[1] 25 Jun 21:45:03.074 # WARNING overcommit_memory is set to 0! ↩
Background save may fail under low memory condition. To fix this↩
issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and ↩
then reboot or run the command 'sysctl vm.overcommit_memory=1' ↩
for this to take effect.

[1] 25 Jun 21:45:03.074 * The server is now ready to accept ↩
connections on port 6379

Here we've run another container interactively. We've specified the --rm flag,
which automatically deletes a container after the process it runs stops. We've
also specified the --volumes-from flag and told it to mount the volumes from
our redis_primary container. Then we've specified a base ubuntu image and
told it to cat the cat /var/log/redis/redis-server.log log file. This takes ad-
vantage of volumes to allow us to mount the /var/log/redis directory from the
redis_primary container and read the log file inside it. We're going to see more
about how we can use this shortly.
Looking at our Redis logs, we see some general warnings, but everything is looking
pretty good. Our Redis server is ready to receive data on port 6379.
So next, let's create our first Redis replica.

Listing 6.48: Running our first Redis replica container
$ sudo docker run -d -h redis_replica1 \
--name redis_replica1 \
--link redis_primary:redis_primary \
jamtur01/redis_replica
0ae440b5c56f48f3190332b4151c40f775615016bf781fc817f631db5af34ef8

We've run another container: this one from the jamtur01/redis_replica image.
We've again specified a hostname (with the -h flag) and a name (with --name↩

Version: v1.2.0 (fba92ef) 201



Chapter 6: Building services with Docker

) of redis_replica1. We've also used the --link flag to link our Redis replica
container with the redis_primary container with the alias redis_primary.
Let's check this new container's logs.

Listing 6.49: Reading our Redis replica logs
$ sudo docker run -ti --rm --volumes-from redis_replica1 \
ubuntu cat /var/log/redis/redis-replica.log
...
[1] 25 Jun 22:10:04.240 # Server started, Redis version 2.8.12
[1] 25 Jun 22:10:04.240 # WARNING overcommit_memory is set to 0! ↩
Background save may fail under low memory condition. To fix this↩
issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and ↩
then reboot or run the command 'sysctl vm.overcommit_memory=1' ↩
for this to take effect.

[1] 25 Jun 22:10:04.240 * The server is now ready to accept ↩
connections on port 6379

[1] 25 Jun 22:10:04.242 * Connecting to MASTER redis_primary:6379
[1] 25 Jun 22:10:04.244 * MASTER <-> SLAVE sync started
[1] 25 Jun 22:10:04.244 * Non blocking connect for SYNC fired the↩

event.
[1] 25 Jun 22:10:04.244 * Master replied to PING, replication can↩

continue...
[1] 25 Jun 22:10:04.245 * Partial resynchronization not possible ↩
(no cached master)

[1] 25 Jun 22:10:04.246 * Full resync from master: 24↩
a790df6bf4786a0e886be4b34868743f6145cc:1485

[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: receiving 18 ↩
bytes from master

[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: Flushing old ↩
data

[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: Loading DB in ↩
memory

[1] 25 Jun 22:10:04.275 * MASTER <-> SLAVE sync: Finished with ↩
success

Version: v1.2.0 (fba92ef) 202



Chapter 6: Building services with Docker

We've run another container to query our logs interactively. We've again spec-
ified the --rm flag, which automatically deletes a container after the process it
runs stops. We've specified the --volumes-from flag and told it to mount the vol-
umes from our redis_replica1 container this time. Then we've specified a base
ubuntu image and told it to cat the cat /var/log/redis/redis-replica.log log
file.
Woot! We're off and replicating between our redis_primary container and our
redis_replica1 container.
Let's add another replica, redis_replica2, just to be sure.

Listing 6.50: Running our second Redis replica container
$ sudo docker run -d -h redis_replica2 \
--name redis_replica2 \
--link redis_primary:redis_primary \
jamtur01/redis_replica
72267cd74c412c7b168d87bba70f3aaa3b96d17d6e9682663095a492bc260357

Let's see a sampling of the logs from our new container.

Version: v1.2.0 (fba92ef) 203



Chapter 6: Building services with Docker

Listing 6.51: Our Redis replica2 logs
$ sudo docker run -ti --rm --volumes-from redis_replica2 ubuntu \
cat /var/log/redis/redis-replica.log
. . .
[1] 25 Jun 22:11:39.417 # Server started, Redis version 2.8.12
[1] 25 Jun 22:11:39.417 # WARNING overcommit_memory is set to 0! ↩
Background save may fail under low memory condition. To fix this↩
issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and ↩
then reboot or run the command 'sysctl vm.overcommit_memory=1' ↩
for this to take effect.

[1] 25 Jun 22:11:39.417 * The server is now ready to accept ↩
connections on port 6379

[1] 25 Jun 22:11:39.417 * Connecting to MASTER redis_primary:6379
[1] 25 Jun 22:11:39.422 * MASTER <-> SLAVE sync started
[1] 25 Jun 22:11:39.422 * Non blocking connect for SYNC fired the↩

event.
[1] 25 Jun 22:11:39.422 * Master replied to PING, replication can↩

continue...
[1] 25 Jun 22:11:39.423 * Partial resynchronization not possible ↩
(no cached master)

[1] 25 Jun 22:11:39.424 * Full resync from master: 24↩
a790df6bf4786a0e886be4b34868743f6145cc:1625

[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: receiving 18 ↩
bytes from master

[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: Flushing old ↩
data

[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: Loading DB in ↩
memory

And again, we're off and away replicating!

Version: v1.2.0 (fba92ef) 204



Chapter 6: Building services with Docker

Creating our Node container
Now that we've got our Redis cluster running, we can launch a container for our
Node.js application.

Listing 6.52: Running our Node.js container
$ sudo docker run -d \
--name nodeapp -p 3000:3000 \
--link redis_primary:redis_primary \
jamtur01/nodejs
9a9dd33957c136e98295de7405386ed2c452e8ad263a6ec1a2a08b24f80fd175

We've created a new container from our jamtur01/nodejs image, specified a name
of nodeapp, and mapped port 3000 inside the container to port 3000 outside. We've
also linked our new nodeapp container to the redis_primary container with an
alias of redis_primary.
We can use docker logs to see what's going on in our nodeapp container.

Listing 6.53: The nodeapp console log
$ sudo docker logs nodeapp
Listening on port 3000

Here we can see that our Node application is bound and listening at port 3000.
Let's browse to our Docker host and see the application at work.

Figure 6.7: Our Node application.

Version: v1.2.0 (fba92ef) 205



Chapter 6: Building services with Docker

We can see that our simple Node application returns an OK status.

Listing 6.54: Node application output
{
"status": "ok"

}

That tells us it's working. Our session state will also be recorded and stored in our
primary Redis container, redis_primary, then replicated to our Redis replicas:
redis_replica1 and redis_replica2.

Capturing our application logs
Now that our application is up and running, we'll want to put it into production,
which involves ensuring that we capture its log output and put it into our logging
servers. We are going to use Logstash to do so. We're going to start by creating
an image that installs Logstash.

Listing 6.55: Creating our Logstash Dockerfile
$ mkdir logstash
$ cd logstash
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.0 (fba92ef) 206

http://logstash.net/


Chapter 6: Building services with Docker

Listing 6.56: Our Logstash image
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install wget
RUN wget -O - http://packages.elasticsearch.org/GPG-KEY-↩
elasticsearch | apt-key add -

RUN echo 'deb http://packages.elasticsearch.org/logstash/1.4/↩
debian stable main' > /etc/apt/sources.list.d/logstash.list

RUN apt-get -yqq update
RUN apt-get -yqq install logstash

ADD logstash.conf /etc/

WORKDIR /opt/logstash

ENTRYPOINT [ "bin/logstash" ]
CMD [ "--config=/etc/logstash.conf" ]

We've created an image that installs Logstash and adds a logstash.conf file to
the /etc/ directory using the ADD instruction. Let's quickly look at this file.

Version: v1.2.0 (fba92ef) 207



Chapter 6: Building services with Docker

Listing 6.57: Our Logstash configuration
input {
file {
type => "syslog"
path => ["/var/log/nodeapp/nodeapp.log", "/var/log/redis/↩
redis-server.log"]

}
}
output {
stdout {
codec => rubydebug

}
}

This is a very simple Logstash configuration that monitors two files: /var/log↩
/nodeapp/nodeapp.log and /var/log/redis/redis-server.log. Logstash will
watch these files and send any new data inside of them into Logstash. The second
part of our configuration, the output stanza, takes any events Logstash receives
and outputs them to standard out. In a real world Logstash configuration we
would output to an Elasticsearch cluster or other destination, but we're just using
this as a demo, so we're going to skip that.

NOTE If you don't know much about Logstash, you can learn more from my
book or the Logstash documentation.

We've specified a working directory of /opt/logstash. Finally, we have specified
an ENTRYPOINT of bin/logstash and a CMD of --config=/etc/logstash.conf↩
to pass in our command flags. This will launch Logstash and load our /etc/↩
logstash.conf configuration file.
Let's build our Logstash image now.

Version: v1.2.0 (fba92ef) 208

http://www.logstashbook.com
http://www.logstashbook.com
http://logstash.net


Chapter 6: Building services with Docker

Listing 6.58: Building our Logstash image
$ sudo docker build -t jamtur01/logstash .

Now that we've built our Logstash image, we can launch a container from it.

Listing 6.59: Launching a Logstash container
$ sudo docker run -d --name logstash \
--volumes-from redis_primary \
--volumes-from nodeapp \
jamtur01/logstash

We've launched a new container called logstash and specified the --volumes↩
-from flag twice to get the volumes from the redis_primary and nodeapp. This
gives us access to the Node and Redis log files. Any events added to those files
will be reflected in the volumes in the logstash container and passed to Logstash
for processing.
Let's look at that now by examining the logs of the logstash container with the
-f flag to follow the log.

Listing 6.60: The logstash container's logs
$ sudo docker logs -f logstash
{:timestamp=>"2014-06-26T00:41:53.273000+0000", :message=>"Using ↩
milestone 2 input plugin 'file'. This plugin should be stable, ↩
but if you see strange behavior, please let us know! For more ↩
information on plugin milestones, see http://logstash.net/docs↩
/1.4.2-modified/plugin-milestones", :level=>:warn}

Let's browse to our web application again and refresh it to generate an event. We
should see that event reflected in our logstash container output.

Version: v1.2.0 (fba92ef) 209



Chapter 6: Building services with Docker

Listing 6.61: A Node event in Logstash
{

"message" => "63.239.94.10 - - [Thu, 26 Jun 2014 01:28:42 ↩
GMT] \"GET /hello/frank HTTP/1.1\" 200 22 \"-\" \"Mozilla↩
/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit↩
/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari↩
/537.36\"",

"@version" => "1",
"@timestamp" => "2014-06-26T01:28:42.593Z",

"type" => "syslog",
"host" => "cfa96519ba54",
"path" => "/var/log/nodeapp/nodeapp.log"

}

And now we have our Node and Redis containers logging to Logstash. In a produc-
tion environment, we'd be sending these events to a Logstash server and storing
them in Elasticsearch. We could also easily add our Redis replica containers or
other components of the solution to our logging environment.

NOTE We could also do Redis backups via volumes if we wanted to.

Summary of our Node stack
We've now seen a multi-container application stack. We've used Docker links to
connect our application together and Docker volumes to help manage a variety
of aspects of our application. We can easily build on this foundation to produce
more complex applications and architectures.

Version: v1.2.0 (fba92ef) 210



Chapter 6: Building services with Docker

Managing Docker containers without SSH
Lastly, before we wrap up our chapter on running services with Docker, it's impor-
tant to understand some of the ways we can manage Docker containers and how
those differ from some more traditional management techniques. Traditionally,
when managing services, we're used to SSHing into our environment or virtual
machines to manage them. In the Docker world, where most containers run a sin-
gle process, this access isn't available. As we've seen much of the time, this access
isn't needed: we can use volumes or links to perform a lot of the same actions. For
example, if our service is managed via a network interface, we can expose that on
a container; if our service is managed through a Unix socket, we can expose that
with a volume. If we need to send a signal to a Docker container, we can also use
the docker kill command, like so:

Listing 6.62: Using docker kill to send signals
$ sudo docker kill -s <signal> <container>

This will send the specific signal you want (e.g., a HUP) to the container in question
rather than killing the container.
Sometimes, however, we do need to sign into a container. To do that, though, we
don't need to run an SSH service or open up any access. We can use a small tool
called nsenter. The nsenter tool allows us to enter into the kernel namespaces
that Docker uses to construct its containers. Technically, it can enter existing
namespaces, or spawn a process into a new set of namespaces. The short version
is this: with nsenter, we can get a shell into an existing container, even if that
container doesn't run SSH or any kind of special-purpose daemon. We can install
nsenter via a Docker container.

Listing 6.63: Installing nsenter
$ sudo docker run -v /usr/local/bin:/target jpetazzo/nsenter

This will install nsenter in /usr/local/bin, and you will be able to use it imme-
diately.

Version: v1.2.0 (fba92ef) 211



Chapter 6: Building services with Docker

TIP The nsenter tool might also be available in your Linux distribution (in the
util-linux package.)

To use nsenter, we'll first need to get the process ID, or PID, of the container we
wish to enter. To do so, we can use the docker inspect command.

Listing 6.64: Finding the process ID of the container
PID=$(sudo docker inspect --format {{.State.Pid}} <container>)

We can then enter the container:

Listing 6.65: Entering a container with nsenter
$ sudo nsenter --target $PID --mount --uts --ipc --net --pid

This will launch a shell inside the container, without needing SSH or any other
special daemon or process.
We can also run commands inside a container by appending the command to the
nsenter command line.

Listing 6.66: Running a command inside a container with nsenter
$ sudo nsenter --target $PID --mount --uts --ipc --net --pid ls
bin boot dev etc home lib lib64 media mnt opt proc . . ↩
.

This will run the ls command inside our target container.

Summary
In this chapter, we've seen how to build some example production services using
Docker containers. We've seen a bit more about how we can build multi-container
services and manage those stacks. We've combined features like Docker links and
volumes and learned how to potentially extend those features to provide us with
capabilities like logging and backups.

Version: v1.2.0 (fba92ef) 212



Chapter 6: Building services with Docker

In the next chapter, we'll look at orchestration with Docker using the Fig and
Consul tools.

Version: v1.2.0 (fba92ef) 213



Chapter 7

Docker Orchestration and Service
Discovery

Orchestration is a pretty loosely defined term. It's broadly the process of auto-
mated configuration, coordination, and management of services. In the Docker
world we use it to describe the set of practices around managing applications run-
ning in multiple Docker containers and potentially across multiple Docker hosts.
Native orchestration is in its infancy in the Docker community but an exciting
ecosystem of tools is being integrated and developed.
In the current ecosystem there are a variety of tools being built and integrated
with Docker. Some of these tools are simply designed to elegantly "wire" together
multiple containers and build application stacks using simple composition. Other
tools provide larger scale coordination between multiple Docker hosts as well as
complex service discovery, scheduling and execution capabilities.
Each of these areas really deserves their own book but we've focussed on a couple
of useful tools that give you some insight into what you can achieve when or-
chestrating containers. They hopefully provide some useful building blocks upon
which you can grow your Docker-enabled environment.
In this chapter we've focused on two areas:

• Simple container orchestration. Here we've looked at Fig. Fig is an open
source Docker orchestration tool developed by the Orchard team and then

214

http://www.fig.sh/


Chapter 7: Docker Orchestration and Service Discovery

acquired by Docker Inc in 2014. It's written in Python and licensed with the
Apache 2.0 license.

• Distributed service discovery. Here we've introduced Consul. Consul is also
open source, licensed with the Mozilla Public License 2.0, and written in
Go. It provides distributed, highly available service discovery. We're going
to look at how you might use Consul and Docker to manage application
service discovery.

TIP We'll talk about many of the other orchestration tools available to you later
in this chapter.

Fig
Now let's get familiar with Fig. With Fig, we define a set of containers to boot up,
and their runtime properties, all defined in a YAML file. Fig calls each of these
containers "services" which it defines as:

A container that interacts with other containers in some way and that
has specific runtime properties.

We're going to take you through installing Fig and and then using it to build a
simple, multi-container application stack.

Installing Fig
We start by installing Fig. Fig is currently available for Linux and OS X. It can be
installed directly as a binary or via a Python Pip package.

Version: v1.2.0 (fba92ef) 215

http://www.consul.io/


Chapter 7: Docker Orchestration and Service Discovery

NOTE Fig doesn't currently work with Boot2Docker. This is being worked on
but it is not quite ready for prime time yet!

To install Fig on Linux we can grab the Fig binary from Git Hub and make it exe-
cutable. Like Docker, Fig is currently only supported on 64-bit Linux installations.
We'll need the curl command available to do this.

Listing 7.1: Installing Fig on Linux
$ sudo bash -c "curl -L https://github.com/docker/fig/releases/↩
download/0.5.2/linux/ > /usr/local/bin/fig"

$ sudo chmod +x /usr/local/bin/fig

This will download the fig binary from Git Hub and install it into the /usr/↩
local/bin directory. We've also used the chmod command to make the fig binary
executable so we can run it.
If we're on OS X we can do the same like so:

Listing 7.2: Installing Fig on OS X
$ curl -L https://github.com/docker/fig/releases/download/0.5.2/↩
darwin > /usr/local/bin/fig

$ chmod +x /usr/local/bin/fig

Fig is also available as a Python package if you're on another platform or if you
prefer installing via package. You will need to have the Python-Pip tool installed
to use the pip command. This is available via the python-pip package on most
Red Hat, Debian and Ubuntu releases.

Listing 7.3: Installing Fig via Pip
$ sudo pip install -U fig

Once you have installed the fig binary you can test it's working using the fig
command with the --version flag:

Version: v1.2.0 (fba92ef) 216



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.4: Testing Fig is working
$ fig --version
fig 0.5.2

Getting our sample application
To demonstrate how Fig works we're going to use a sample Python Flask applica-
tion that combines two containers:

• An application container running our sample Python application.
• A Redis container running the Redis database.

Let's start with building our sample application. Firstly, we create a directory and
a Dockerfile.

Listing 7.5: Creating the figapp directory
$ mkdir figapp
$ cd figapp
$ touch Dockerfile

Here we've created a directory to hold our sample application, which we're calling
figapp. We've changed into that directory and created an empty Dockerfile to
hold our Docker image build instructions.
Next, we need to add our application code. Let's create a file called app.py and
add the following Python code to it.

Version: v1.2.0 (fba92ef) 217



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.6: The app.py file
from flask import Flask
from redis import Redis
import os

app = Flask(__name__)
redis = Redis(host="redis_1", port=6379)

@app.route('/')
def hello():

redis.incr('hits')
return 'Hello Docker Book reader! I have been seen {0} times'↩
.format(redis.get('hits'))

if __name__ == "__main__":
app.run(host="0.0.0.0", debug=True)

TIP You can find this source code on Git Hub here or on the Docker Book site.

This simple Flash application tracks a counter stored in Redis. The counter is
incremented each time the root URL, /, is hit.
We also need to create a requirements.txt file to store our application's depen-
dencies. Let's create that file now and add the following dependencies.

Listing 7.7: The requirements.txt file
flask
redis

Now let's populate our Fig Dockerfile.

Version: v1.2.0 (fba92ef) 218

https://github.com/jamtur01/dockerbook-code/tree/master/code/7/figapp
http://www.dockerbook.com/code/


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.8: The figapp Dockerfile
# Fig Sample application image
FROM python:2.7
MAINTAINER James Turnbull <james@example.com>

ADD . /figapp

WORKDIR /figapp

RUN pip install -r requirements.txt

Our Dockerfile is very simple. It is based on the python:2.7 image. We add our
app.py and requirements.txt files into a directory in the image called /figapp↩
. The Dockerfile then sets the working directory to /figapp and runs the pip
installation process to install our application's dependencies: flask and redis.
Let's build that image now using the docker build command.

Version: v1.2.0 (fba92ef) 219



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.9: Building the figapp application
$ cd figapp
$ sudo docker build -t="jamtur01/figapp" .
Sending build context to Docker daemon 16.9 kB
Sending build context to Docker daemon
Step 0 : FROM python:2.7
---> 1c8df2f0c10b
Step 1 : MAINTAINER James Turnbull <james@example.com>
---> Using cache
---> aa564fe8be5a
Step 2 : ADD . /figapp
---> c33aa147e19f
Removing intermediate container 0097bc79d37b
Step 3 : WORKDIR /figapp
---> Running in 76e5ee8544b3
---> d9da3105746d
Removing intermediate container 76e5ee8544b3
Step 4 : RUN pip install -r requirements.txt
---> Running in e71d4bb33fd2
Downloading/unpacking flask (from -r requirements.txt (line 1))
. . .
Successfully installed flask redis Werkzeug Jinja2 itsdangerous ↩
markupsafe

Cleaning up...
---> bf0fe6a69835
Removing intermediate container e71d4bb33fd2
Successfully built bf0fe6a69835

This will build a new image called jamtur01/figapp containing our sample appli-
cation and its required dependencies. We can now use Fig to deploy our applica-
tion.

NOTE We'll be using a Redis container created from the default Redis image

Version: v1.2.0 (fba92ef) 220



Chapter 7: Docker Orchestration and Service Discovery

on the Docker Hub so we don't need to build or customize that.

The fig.yml file
Now we've got our application container setup we can configure Fig to create
both the services we require. With Fig, we define a set of services (in the form
of Docker containers) to boot up. We also define the runtime properties we want
these services to start with, much as you would do with the docker run command.
We define all of this in a YAML file. We then run the fig up command. Fig boots
the containers, executes the appropriate runtime configuration, and multiplexes
the log output together for us.
Let's create a fig.yml file for our application.

Listing 7.10: Creating the fig.yml file
$ cd figapp
$ touch fig.yml

Let's populate our fig.yml file. The fig.yml file is a YAML file that contains
instructions for running one or more Docker containers. Let's look the instructions
for our example application.

Version: v1.2.0 (fba92ef) 221



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.11: The fig.yml file
web:
image: jamtur01/figapp
command: python app.py
ports:
- "5000:5000"
volumes:
- .:/figapp
links:
- redis

redis:
image: redis

Each service we wish to launch is specified as a YAML hash here: web and redis.
For our web service we've specified some runtime options. Firstly, we've specified
the image we're using. In our case the jamtur01/figapp image. Fig can also
build Docker images. You can use the build instruction and provide the path to
a Dockerfile to have Fig build an image and then create services from it.

Listing 7.12: The build instruction
web:
build: /home/james/figapp

. . .

This build instruction would build a Docker image from a Dockerfile found in
the /home/james/figapp directory.
We've also specified the command to run when launching the service. Next we
specify the ports and volumes as a list of the port mappings and volumes we want
for our service. We've specified that we're mapping port 5000 inside our service
to port 5000 on the host. We're also creating /figapp as a volume. Finally, we
specify any links for this service. Here we link our web service to the redis service.
If we were executing the same configuration on the command line using docker↩
run we'd do it like so:

Version: v1.2.0 (fba92ef) 222



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.13: The docker run equivalent command
$ sudo docker run -d -p 5000:5000 -v .:/figapp --link redis:redis↩

\
--name jamtur01/figapp python app.py

Next we've specified another service called redis. For this service we're not setting
any runtime defaults at all. We're just going to use the base redis image. By
default, containers run from this image launches a Redis database on the standard
port. So we don't need to configure or customize it.

TIP You can see a full list of the available instructions you can use in the fig.yml
file here.

Running Fig
Once we've specified our services in fig.yml we use the fig up command to exe-
cute them both.

Version: v1.2.0 (fba92ef) 223

http://www.fig.sh/yml.html


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.14: Running fig up with our sample application
$ cd figapp
$ sudo fig up
Creating figapp_redis_1...
Creating figapp_web_1...
Attaching to figapp_redis_1, figapp_web_1
redis_1 | |`-._`-._ `-.__.-' _.-'_.-'|
redis_1 | | `-._`-._ _.-'_.-' |
redis_1 | `-._ `-._`-.__.-'_.-' _.-'
redis_1 | `-._ `-.__.-' _.-'
redis_1 | `-._ _.-'
redis_1 | `-.__.-'
redis_1 |
redis_1 | [1] 13 Aug 01:48:32.218 # Server started, Redis version↩

2.8.13
redis_1 | [1] 13 Aug 01:48:32.218 # WARNING overcommit_memory is ↩
set to 0! Background save may fail under low memory condition. ↩
To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.↩
conf and then reboot or run the command 'sysctl vm.↩
overcommit_memory=1' for this to take effect.

redis_1 | [1] 13 Aug 01:48:32.218 * The server is now ready to ↩
accept connections on port 6379

web_1 | * Running on http://0.0.0.0:5000/
web_1 | * Restarting with reloader

TIP You must be inside the directory with the fig.yml file in order to execute
most Fig commands.

We can see that Fig has created two new services: figapp_redis_1 and
figapp_web_1. So where did these names come from? Well, to ensure our
services are unique, Fig has prefixed and suffixed the names specified in the
fig.yml file with the directory and a number respectively.

Version: v1.2.0 (fba92ef) 224



Chapter 7: Docker Orchestration and Service Discovery

Fig then attaches to the logs of each service, each line of log output is prefixed with
the abbreviated name of the service it comes from, and outputs them multiplexed:

Listing 7.15: Fig service log output
redis_1 | [1] 13 Aug 01:48:32.218 # Server started, Redis version↩

2.8.13

The services (and Fig) are being run interactively. That means if you use Ctrl-C
or the like to cancel Fig then it'll stop the running services. We could also run Fig
with -d flag to run our services daemonized (similar to the docker run -d flag).

Listing 7.16: Running Fig daemonized
$ sudo fig up -d

Let's look at the sample application that's now running on the host. The applica-
tion is bound to all interfaces on the Docker host on port 5000. So we can browse
to that site on the host's IP address or via localhost.

Figure 7.1: Sample Fig application.

We can see a message displaying the current counter value. We can increment the
counter by refreshing the site. Each refresh stores the increment in Redis. The
Redis update is done via the link between the Docker containers controlled by Fig.

TIP By default, Fig tries to connect to a local Docker daemon but it'll also honor

Version: v1.2.0 (fba92ef) 225



Chapter 7: Docker Orchestration and Service Discovery

the DOCKER_HOST environment variable to connect to a remote Docker host.

Using Fig
Now let's explore some of Fig's other options. Firstly, let's use Ctrl-C to cancel
our running services and then restart them as daemonized services.
Press Ctrl-C inside the figapp directory and then re-run the fig up command,
this time with the -d flag.

Listing 7.17: Restarting Fig as daemonized
$ sudo fig up -d
Recreating figapp_redis_1...
Recreating figapp_web_1...
$ . . .

We can see that Fig has recreated our services, launched them and returned to the
command line.
Our Fig-managed services are now running daemonized on the host. Let's look at
them now using the fig ps command; a close cousin of the docker ps command.

TIP You can get help on Fig commands by running fig help and the command
you wish to get help on, for example fig help ps.

The fig ps command lists all of the currently running services from our local
fig.yml file.

Version: v1.2.0 (fba92ef) 226



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.18: Running the fig ps command
$ cd figapp
$ sudo fig ps

Name Command State Ports
-----------------------------------------------------
figapp_redis_1 redis-server Up 6379/tcp
figapp_web_1 python app.py Up 5000->5000/tcp

This shows some basic information about our running Fig services. The name of
each service, what command we used to start the service, and the ports that are
mapped on each service.
We can also drill down further using the fig logs command to show us the log
events from our services.

Listing 7.19: Showing a Fig services logs
$ sudo fig logs
fig logs
Attaching to figapp_redis_1, figapp_web_1
redis_1 | ( ' , .-` | `, ) Running in ↩
stand alone mode

redis_1 | |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
redis_1 | | `-._ `._ / _.-' | PID: 1
. . .

This will tail the log files of your services, much as the tail -f command. Like
the tail -f command you'll need to use Ctrl-C or the like to exit from it.
We can also stop our running services with the fig stop command.

Listing 7.20: Stopping running services
$ sudo fig stop
Stopping figapp_web_1...
Stopping figapp_redis_1...

This will stop both services. If the services don't stop you can use the fig kill

Version: v1.2.0 (fba92ef) 227



Chapter 7: Docker Orchestration and Service Discovery

command to force kill the services.
We can verify this with the fig ps command again.

Listing 7.21: Verifying our Fig services have been stopped
$ sudo fig ps

Name Command State Ports
---------------------------------------------
figapp_redis_1 redis-server Exit 0
figapp_web_1 python app.py Exit 0

If you've stopped services using fig stop or fig kill you can also restart with
again with the fig start command. This is much like using the docker start
command and will restart these services.
Finally, we can remove services using the fig rm command.

Listing 7.22: Removing Fig services
$ sudo fig rm
Going to remove figapp_redis_1, figapp_web_1
Are you sure? [yN] y
Removing figapp_redis_1...
Removing figapp_web_1...

You'll be prompted to confirm you wish to remove the services and then both
services will be deleted. The fig ps command will now show no running or
stopped services.

Listing 7.23: Showing no Fig services
$ sudo fig ps
Name Command State Ports
------------------------------

Version: v1.2.0 (fba92ef) 228



Chapter 7: Docker Orchestration and Service Discovery

Fig in summary
Now in one file we have a simple Python-Redis stack built! You can see how much
easier this can make constructing applications from multiple Docker containers.
This, however, just scratches the surface of what you can do with Fig. There are
some more examples using Rails, Django and Wordpress on the Fig website that
introduce some more advanced concepts. You can also use Fig in conjunction with
Shipyard to provide a graphical user interface.

TIP You can see a full command line reference here.

Consul, Service Discovery and Docker
Service discovery is the mechanism by which distributed applications manage
their relationships. A distributed application is usually made up of multiple com-
ponents. These components can be located together locally or distributed across
data centres or geographical regions. Each of these components usually provides
or consumes services to or from other components.
Service discovery allows these components to find each other when they want
to interact. Due to the distributed nature of these applications, service discovery
mechanisms also need to be distributed. As they are usually the "glue" between
components of distributed applications they also need to be dynamic, reliable,
resilient and able to quickly and consistently share data about these services.
Docker, with its focus on distributed applications and service orientated and mi-
croservices architectures, is an ideal candidate for integration with a service dis-
covery tool. Each Docker container can register its running service or services
with the tool. This provides the information needed, for example an IP address or
port or both, to allow interaction between services.
Our example service discovery tool, Consul, is a specialized datastore that use
consensus algorithms. Consul specifically uses the Raft consensus algorithm, to

Version: v1.2.0 (fba92ef) 229

http://www.fig.sh/rails.html
http://www.fig.sh/django.html
http://www.fig.sh/wordpress.html
https://github.com/shipyard/shipyard
http://www.fig.sh/cli.html
http://www.consul.io/
http://en.wikipedia.org/wiki/Raft_(computer_science)


Chapter 7: Docker Orchestration and Service Discovery

require a quorum for writes. It also exposes a key value store and service catalog
that is highly available, fault-tolerant, and maintains strong consistency guaran-
tees. Services can register themselves with Consul and share that registration
information in a highly-available and distributed manner.
Consul is also interesting because it provides:

• A service catalog with an API instead of the traditional key=value store of
most service discovery tools.

• Both a DNS-based query interface through in inbuilt DNS server and a HTTP-
based REST API to query the information. The choice of interfaces, especially
the DNS-based interface, allows you to easily drop Consul into your existing
environment.

• Service monitoring AKA health checks. Consul has powerful service moni-
toring built into the tool.

To get a better understanding of how Consul works, we're going to see how to
run distributed Consul inside Docker containers. We're then going to register
services from Docker containers to Consul and query that data from other Docker
containers. To make it more interesting we're going to do this across multiple
Docker hosts.
To do this we're going to:

• Create a Docker image for the Consul service.
• Build three hosts running Docker and then run Consul on each. The three
hosts will provide us with a distributed environment to see how resiliency
and failover works with Consul.

• Build services that we'll register with Consul and then query that data from
another service.

NOTE You can see a more generic introduction to Consul here.

Version: v1.2.0 (fba92ef) 230

http://www.consul.io/intro/index.html


Chapter 7: Docker Orchestration and Service Discovery

Building a Consul image
We're going to start with creating a Dockerfile to build our Consul image. Let's
create a directory to hold our Consul image first.

Listing 7.24: Creating a Consul Dockerfile directory
$ mkdir consul
$ cd consul
$ touch Dockerfile

Now let's look at the Dockerfile for our Consul image.

Version: v1.2.0 (fba92ef) 231



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.25: The Consul Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED_AT 2014-08-01

RUN apt-get -qqy update
RUN apt-get -qqy install curl unzip

ADD https://dl.bintray.com/mitchellh/consul/0.3.1_linux_amd64.zip↩
/tmp/consul.zip

RUN cd /usr/sbin && unzip /tmp/consul.zip && chmod +x /usr/sbin/↩
consul && rm /tmp/consul.zip

ADD https://dl.bintray.com/mitchellh/consul/0.3.1_web_ui.zip /tmp↩
/webui.zip

RUN cd /tmp/ && unzip webui.zip && mv dist/ /webui/

ADD consul.json /config/

EXPOSE 53/udp 8300 8301 8301/udp 8302 8302/udp 8400 8500

VOLUME ["/data"]

ENTRYPOINT [ "/usr/sbin/consul", "agent", "-config-dir=/config" ]
CMD []

Our Dockerfile is pretty simple. It's based on an Ubuntu 14.04 image. It installs
curl and unzip. We then download the Consul zip file containing the consul↩
binary. We move that binary to /usr/sbin/ and make it executable. We also
download Consul's web interface and place it into a directory called /webui. We're
going to see this web interface in action a little later.
We then add a configuration file for Consul, consul.json, to the /config directory.
Let's look at that file now.

Version: v1.2.0 (fba92ef) 232



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.26: The consul.json configuration file
{
"data_dir": "/data",
"ui_dir": "/webui",
"client_addr": "0.0.0.0",
"ports": {
"dns": 53

},
"recursor": "8.8.8.8"

}

The consul.json configuration file is JSON formatted and provides Consul with
the information needed to get running. We've specified a data directory, /data,
to hold Consul's data. We also specify the location of the web interface files: /↩
webui. We use the client_addr variable to bind Consul to all interfaces inside our
container.
We also use the ports block to configure on which ports various Consul services
run. In this case we're specifying that Consul's DNS service should run on port
53. Lastly, we've used the recursor option to specify a DNS server to use for
resolution if Consul can't resolve a DNS request. We've specified 8.8.8.8 which
is one of the IP addresses of Google's public DNS service.

TIP You can find the full list of available Consul configuration options here.

Back in our Dockerfile we've use the EXPOSE instruction to open up a series of
ports that Consul requires to operate. I've added a table showing each of these
ports and what they do.

Port Purpose
53/udp DNS server
8300 Server RPC

Version: v1.2.0 (fba92ef) 233

https://developers.google.com/speed/public-dns/
http://www.consul.io/docs/agent/options.html


Chapter 7: Docker Orchestration and Service Discovery

Port Purpose

8301 + udp Serf LAN port
8302 + udp Serf WAN port
8400 RPC endpoint
8500 HTTP API

Table 7.1: Consul's default ports.

You don't need to worry about most of them for the purposes of this chapter. The
important ones for us are 53/udp which is the port Consul is going to be running
DNS on. We're going to use DNS to query service information. We're also going
to use Consul's HTTP API and its web interface, both of which are bound to port
8500. The rest of the ports handle the backend communication and clustering
between Consul nodes. We'll configure them in our Docker container but we don't
do anything specific with them.

NOTE You can find more details of what each port does here.

Next, we've also made our /data directory a volume using the VOLUME instruction.
This is useful if we want to manage or work with this data as we saw in Chapter
6.
Finally, we've specified an ENTRYPOINT instruction to launch Consul using the
consul binary when a container is launched from our image.
Let's step through the command line options we've used. We've specified the
consul binary in /usr/sbin/. We've passed it the agent command which tells
Consul to run as an agent and the -config-dir flag and specified the location of
our consul.json file in the /config directory.
Let's build our image now.

Version: v1.2.0 (fba92ef) 234

http://www.consul.io/docs/agent/options.html


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.27: Building our Consul image
$ sudo docker build -t="jamtur01/consul" .

NOTE You can get our Consul Dockerfile and configuration file here or on
GitHub.

Testing a Consul container locally
Before we run Consul on multiple hosts, let's see it working locally on a single
host. To do this we'll run a container from our new jamtur01/consul image.

Version: v1.2.0 (fba92ef) 235

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.28: Running a local Consul node
$ sudo docker run -p 8500:8500 -p 53:53/udp \
-h node1 jamtur01/consul -server -bootstrap
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Consul agent running!

Node name: 'node1'
Datacenter: 'dc1'

. . .
2014/08/25 21:47:49 [WARN] raft: Heartbeat timeout reached, ↩
starting election

2014/08/25 21:47:49 [INFO] raft: Node at 172.17.0.26:8300 [↩
Candidate] entering Candidate state

2014/08/25 21:47:49 [INFO] raft: Election won. Tally: 1
2014/08/25 21:47:49 [INFO] raft: Node at 172.17.0.26:8300 [Leader↩
] entering Leader state

2014/08/25 21:47:49 [INFO] consul: cluster leadership acquired
2014/08/25 21:47:49 [INFO] consul: New leader elected: node1
2014/08/25 21:47:49 [INFO] consul: member 'node1' joined, marking↩

health alive

We've used the docker run command to create a new container. We've mapped
two ports, port 8500 in the container to 8500 on the host and port 53 in the con-
tainer to 53 on the host. We've also used the -h flag to specify the hostname of
the container, here node1. This is going to be both the hostname of the container
and the name of the Consul node. We've then specified the name of our Consul
image, jamtur01/consul.
Lastly, we've passed two flags to the consul binary: -server and -bootstrap. The
-server flag tells the Consul agent to operate in server mode. The -bootstrap flag
tells Consul that this node is allowed to self-elect as a leader. This allows us to
see a Consul agent in server mode doing a Raft leadership election.

WARNING It is important that no more than one server per datacenter be

Version: v1.2.0 (fba92ef) 236



Chapter 7: Docker Orchestration and Service Discovery

running in bootstrap mode. Otherwise consistency cannot be guaranteed if mul-
tiple nodes are able to self-elect. We'll see some more on this when we add other
nodes to the cluster.

We can see that Consul has started node1 and done a local leader election. As
we've got no other Consul nodes running it is not connected to anything else.
We can also see this via the Consul web interface if we browse to our local host's
IP address on port 8500.

Figure 7.2: The Consul web interface.

Running a Consul cluster in Docker
As Consul is distributed we'd normally create three (or more) hosts to run in sep-
arate data centres, clouds or regions. Or even add an agent to every application
server. This will provide us with sufficient distributed resilience. We're going to
mimic this required distribution by creating three hosts each with a Docker dae-
mon to run Consul. We've created three new Ubuntu 14.04 hosts: larry, curly,
and moe. On each host we've installed a Docker daemon. We've also pulled down
the jamtur01/consul image.

Listing 7.29: Pulling down the Consul image
$ sudo docker pull jamtur01/consul

On each host we're going to run a Docker container with the jamtur01/consul
image. To do this we need to choose a network to run Consul over. In most cases

Version: v1.2.0 (fba92ef) 237



Chapter 7: Docker Orchestration and Service Discovery

this would be a private network but as we're just simulating a Consul cluster I
am going to use the public interfaces of each host. To start Consul on this public
network I am going to need the public IP address of each host. This is the address
we're going to bind each Consul agent too.
Let's grab that now on larry and assign it to an environment variable,
$PUBLIC_UP.

Listing 7.30: Assigning public IP on larry
larry$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{↩
print $4}')"

larry$ echo $PUBLIC_IP
104.131.38.54

And then create the same $PUBLIC_IP variable on curly and moe too.

Listing 7.31: Assigning public IP on curly and moe
curly$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{↩
print $4}')"

curly$ echo $PUBLIC_IP
104.131.38.55
moe$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{↩
print $4}')"

moe$ echo $PUBLIC_IP
104.131.38.56

We can see we've got three hosts and three IP addresses, each assigned to the
$PUBLIC_IP environmental variable.

Host IP Address
larry 104.131.38.54
curly 104.131.38.55
moe 104.131.38.56

Table 7.2: Consul host IP addresses
Version: v1.2.0 (fba92ef) 238



Chapter 7: Docker Orchestration and Service Discovery

We're also going to need to nominate a host to bootstrap to start the cluster. We're
going to choose larry. This means we'll need larry's IP address on curly and
moe to tell them which Consul node's cluster to join. Let's set that up now by
adding larry's IP address of 104.131.38.54 to curly and moe as the environment
variable, $JOIN_IP.

Listing 7.32: Adding the cluster IP address
curly$ JOIN_IP=104.131.38.54
moe$ JOIN_IP=104.131.38.54

Finally, we've made one network configuration change to the Docker daemon on
each host to make it easier to use Consul. We've configured the DNS lookup of
the Docker daemon to use:

• The local Docker IP address so we can use Consul to resolve DNS.
• Google DNS to resolve any other queries.
• Specified a search domain for Consul queries.

To do this we first need the IP address of the Docker interface docker0.

Listing 7.33: Getting the docker0 IP address
larry$ ip addr show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ↩
noqueue state UP group default

link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global docker0

valid_lft forever preferred_lft forever
inet6 fe80::5484:7aff:fefe:9799/64 scope link

valid_lft forever preferred_lft forever

We can see the interface has the IP of 172.17.42.1.
We've taken this address and altered Docker's startup options in the /etc/↩
default/docker file from:

Version: v1.2.0 (fba92ef) 239



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.34: Original Docker defaults
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

To:

Listing 7.35: New Docker defaults on larry
DOCKER_OPTS='--dns 172.17.42.1 --dns 8.8.8.8 --dns-search service↩
.consul'

We now do the same on curly and moe, finding the docker0 IP address and updat-
ing the DOCKER_OPTS flag in /etc/default/docker.

TIP On other distributions you'd updated the Docker daemon defaults using the
appropriate mechanism. See Chapter 2 for further information.

We then restart the Docker daemon on each host, for example:

Listing 7.36: Restarting the Docker daemon on larry
larry$ sudo service docker restart

Starting the Consul bootstrap node
Let's start our initial bootstrap node on larry. Our docker run command is going
to be a little complex because we're mapping a lot of ports. Indeed, we need to
map all the ports listed in Table 7.1 above. And, as we're both running Consul in
a container and connecting to containers on other hosts, we're going to map each
port to the corresponding port on the local host. This will allow both internal and
external access to Consul.
Let's see our docker run command now.

Version: v1.2.0 (fba92ef) 240



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.37: Start the Consul bootstrap node
larry$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name larry_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -bootstrap-expect 3

Here we've launched a daemonized container using the jamtur01/consul image
to run our Consul agent. We can see we've set the -h flag to set the hostname of
the container to the value of the $HOSTNAME environment variable. This sets our
Consul agent's name to be the local hostname, here larry. We're also mapped a
series of eight ports from inside the container to the respective ports on the local
host.
We've also specified some command line options for the Consul agent.

Listing 7.38: Consul agent command line arguments
-server -advertise $PUBLIC_IP -bootstrap-expect 3

The -server flag tell the agent to run in server mode. The -advertise flag tells
that server to advertise itself on the IP address specified in the $PUBLIC_IP environ-
ment variable. Lastly, the -bootstrap-expect flag tells Consul how many agents
to expect in this cluster. In this case, 3 agents. It also bootstraps the cluster.
Let's look at the logs of our initial Consul container with the docker logs com-
mand.

Version: v1.2.0 (fba92ef) 241



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.39: Starting bootstrap Consul node
larry$ sudo docker logs larry_agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Consul agent running!

Node name: 'larry'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
Cluster Addr: 104.131.38.54 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
. . .
2014/08/31 18:10:07 [WARN] memberlist: Binding to public address ↩
without encryption!

2014/08/31 18:10:07 [INFO] serf: EventMemberJoin: larry ↩
104.131.38.54

2014/08/31 18:10:07 [WARN] memberlist: Binding to public address ↩
without encryption!

2014/08/31 18:10:07 [INFO] serf: EventMemberJoin: larry.dc1 ↩
104.131.38.54

2014/08/31 18:10:07 [INFO] raft: Node at 104.131.38.54:8300 [↩
Follower] entering Follower state

2014/08/31 18:10:07 [INFO] consul: adding server larry (Addr: ↩
104.131.38.54:8300) (DC: dc1)

2014/08/31 18:10:07 [INFO] consul: adding server larry.dc1 (Addr:↩
104.131.38.54:8300) (DC: dc1)

2014/08/31 18:10:07 [ERR] agent: failed to sync remote state: No ↩
cluster leader

2014/08/31 18:10:08 [WARN] raft: EnableSingleNode disabled, and ↩
no known peers. Aborting election.

We can see that the agent on larry is started but because we don't have any
more nodes yet no election has taken place. We can see this from the only error
returned.

Version: v1.2.0 (fba92ef) 242



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.40: Cluster leader error
[ERR] agent: failed to sync remote state: No cluster leader

Starting the remaining nodes
Now we've bootstrapped our cluster we can start our remaining nodes on curly
and moe. Let's start with curly. We use the docker run command to launch our
second agent.

Listing 7.41: Starting the agent on curly
curly$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name curly_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -join $JOIN_IP

We see our command is very similar to our bootstrapped node on larry with the
exception of the command we're passing to the Consul agent.

Listing 7.42: Launching the Consul agent on curly
-server -advertise $PUBLIC_IP -join $JOIN_IP

Again we've enabled the Consul agent's server mode with -server and bound the
agent to the public IP address using the -advertise flag. Finally, we've told Consul
to join our Consul cluster by specifying larry's IP address using the $JOIN_IP↩
environment variable.
Let's see what happened when we launched our container.

Version: v1.2.0 (fba92ef) 243



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.43: Looking at the Curly agent logs
curly$ sudo docker logs curly_agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...

Join completed. Synced with 1 initial agents
==> Consul agent running!

Node name: 'curly'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
Cluster Addr: 104.131.38.55 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
. . .
2014/08/31 21:45:49 [INFO] agent: (LAN) joining: [104.131.38.54]
2014/08/31 21:45:49 [INFO] serf: EventMemberJoin: larry ↩
104.131.38.54

2014/08/31 21:45:49 [INFO] agent: (LAN) joined: 1 Err: <nil>
2014/08/31 21:45:49 [ERR] agent: failed to sync remote state: No ↩
cluster leader

2014/08/31 21:45:49 [INFO] consul: adding server larry (Addr: ↩
104.131.38.54:8300) (DC: dc1)

2014/08/31 21:45:51 [WARN] raft: EnableSingleNode disabled, and ↩
no known peers. Aborting election.

We can see curly has joined larry, indeed on larry we should see something like
the following.

Listing 7.44: Curly joining Larry
2014/08/31 21:45:49 [INFO] serf: EventMemberJoin: curly ↩
104.131.38.55

2014/08/31 21:45:49 [INFO] consul: adding server curly (Addr: ↩
104.131.38.55:8300) (DC: dc1)

Version: v1.2.0 (fba92ef) 244



Chapter 7: Docker Orchestration and Service Discovery

But we've still not got a quorum in our cluster, remember we told -bootstrap-↩
expect to expect 3 nodes. So let's start our final agent on moe.

Listing 7.45: Starting the agent on curly
moe$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name moe_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -join $JOIN_IP

Our docker run command is basically the same as what we ran on curly. But this
time we have three agents in our cluster. Now, if we look at the container's logs,
we will see a full cluster.

Version: v1.2.0 (fba92ef) 245



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.46: Consul logs on moe
moe$ sudo docker logs moe_agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...

Join completed. Synced with 1 initial agents
==> Consul agent running!

Node name: 'moe'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
Cluster Addr: 104.131.38.56 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
. . .
2014/08/31 21:54:03 [ERR] agent: failed to sync remote state: No ↩
cluster leader

2014/08/31 21:54:03 [INFO] consul: adding server curly (Addr: ↩
104.131.38.55:8300) (DC: dc1)

2014/08/31 21:54:03 [INFO] consul: adding server larry (Addr: ↩
104.131.38.54:8300) (DC: dc1)

2014/08/31 21:54:03 [INFO] consul: New leader elected: larry

We can see from our container's logs that moe has joined the cluster. This causes
Consul to reach its expected number of cluster members and triggers a leader
election. In this case larry is elected cluster leader.
We can see the result of this final agent joining in the Consul logs on larry too.

Version: v1.2.0 (fba92ef) 246



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.47: Consul leader election on larry
2014/08/31 21:54:03 [INFO] consul: Attempting bootstrap with ↩
nodes: [104.131.38.55:8300 104.131.38.56:8300 ↩
104.131.38.54:8300]

2014/08/31 21:54:03 [WARN] raft: Heartbeat timeout reached, ↩
starting election

2014/08/31 21:54:03 [INFO] raft: Node at 104.131.38.54:8300 [↩
Candidate] entering Candidate state

2014/08/31 21:54:03 [WARN] raft: Remote peer 104.131.38.56:8300 ↩
does not have local node 104.131.38.54:8300 as a peer

2014/08/31 21:54:03 [INFO] raft: Election won. Tally: 2
2014/08/31 21:54:03 [INFO] raft: Node at 104.131.38.54:8300 [↩
Leader] entering Leader state

2014/08/31 21:54:03 [INFO] consul: cluster leadership acquired
2014/08/31 21:54:03 [INFO] consul: New leader elected: larry
. . .
2014/08/31 21:54:03 [INFO] consul: member 'larry' joined, marking↩

health alive
2014/08/31 21:54:03 [INFO] consul: member 'curly' joined, marking↩

health alive
2014/08/31 21:54:03 [INFO] consul: member 'moe' joined, marking ↩
health alive

We can also browse to the Consul web interface and select the Consul service to
see the current state

Version: v1.2.0 (fba92ef) 247



Chapter 7: Docker Orchestration and Service Discovery

Figure 7.3: The Consul service in the web interface.

Finally, we can test the DNS is working using the dig command.

Version: v1.2.0 (fba92ef) 248



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.48: Testing the Consul DNS
larry$ dig @172.17.42.1 consul.service.consul

; <<>> DiG 9.9.5-3-Ubuntu <<>> @172.17.42.1 consul.service.consul
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13502
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ↩
ADDITIONAL: 0

;; QUESTION SECTION:
;consul.service.consul. IN A

;; ANSWER SECTION:
consul.service.consul. 0 IN A 104.131.38.55
consul.service.consul. 0 IN A 104.131.38.54
consul.service.consul. 0 IN A 104.131.38.56

;; Query time: 2 msec
;; SERVER: 172.17.42.1#53(172.17.42.1)
;; WHEN: Sun Aug 31 21:30:27 EDT 2014
;; MSG SIZE rcvd: 150

Here we've queried the IP of the local Docker interface as a DNS server and asked
it to return any information on consul.service.consul. This format is Consul's
DNS shorthand for services: consul is the host and service.consul is the domain.
Here consul.service.consul represent the DNS entry for the Consul service itself.
For example:

Listing 7.49: Querying another Consul service via DNS
larry$ dig @172.17.42.1 webservice.service.consul

Would return all DNS A records for the service webservice.

Version: v1.2.0 (fba92ef) 249



Chapter 7: Docker Orchestration and Service Discovery

TIP You can see more details on Consul's DNS interface here.

We now have a running Consul cluster inside Docker containers running on three
separate hosts. That's pretty cool but it's not overly useful. Let's see how we can
register a service in Consul and then retrieve that data.

Running a distributed service with Consul in Docker
To register our service we're going to create a phony distributed application writ-
ten in the uWSGI framework. We're going to build our application in two pieces.

• A web application, distributed_app. It runs web workers and registers
them as services with Consul when it starts.

• A client for our application, distributed_client. The client reads data
about distributed_app from Consul and reports the current application
state and configuration.

We're going run the distributed_app on two of our Consul nodes: larry and
curly. We'll run the distributed_client client on the moe node.

Building our distributed application

We're going to start with creating a Dockerfile to build distributed_app. Let's
create a directory to hold our image first.

Listing 7.50: Creating a distributed_app Dockerfile directory
$ mkdir distributed_app
$ cd distributed_app
$ touch Dockerfile

Now let's look at the Dockerfile for our distributed_app application.

Version: v1.2.0 (fba92ef) 250

http://www.consul.io/docs/agent/dns.html
http://uwsgi-docs.readthedocs.org/en/latest/


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.51: The distributed_app Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01

RUN apt-get -qqy update
RUN apt-get -qqy install ruby-dev git libcurl4-openssl-dev curl ↩
build-essential python

RUN gem install --no-ri --no-rdoc uwsgi sinatra
RUN uwsgi --build-plugin https://github.com/unbit/uwsgi-consul

RUN mkdir -p /opt/distributed_app
WORKDIR /opt/distributed_app

ADD uwsgi-consul.ini /opt/distributed_app/
ADD config.ru /opt/distributed_app/

ENTRYPOINT [ "uwsgi", "--ini", "uwsgi-consul.ini", "--ini", "↩
uwsgi-consul.ini:server1", "--ini", "uwsgi-consul.ini:server2" ]

CMD []

Our Dockerfile installs some required packages including the uWSGI and Sinatra
frameworks as well as a plugin to allow uWSGI to write to Consul. We create a
directory called /opt/distributed_app/ and make it our working directory. We
then add two files, uwsgi-consul.ini and config.ru to that directory.
The uwsgi-consul.ini file configured uWSGI itself. Let's look at it now.

Version: v1.2.0 (fba92ef) 251

https://github.com/unbit/uwsgi-consul


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.52: The uWSGI configuration
[uwsgi]
plugins = consul
socket = 127.0.0.1:9999
master = true
enable-threads = true

[server1]
consul-register = url=http://%h.node.consul:8500,name=↩
distributed_app,id=server1,port=2001

mule = config.ru

[server2]
consul-register = url=http://%h.node.consul:8500,name=↩
distributed_app,id=server2,port=2002

mule = config.ru

The uwsgi-consul.ini file uses uWSGI's Mule construct to run two identical ap-
plications that do "Hello World" in the Sinatra framework. Let's look at those in
the config.ru file.

Listing 7.53: The distributed_app config.ru file
require 'rubygems'
require 'sinatra'

get '/' do
"Hello World!"
end

run Sinatra::Application

Each application is defined in a block, labelled server1 and server2 respectively.
Also inside these blocks is a call to the uWSGI Consul plugin. This call connects
to our Consul instance and registers a service called distributed_app with an ID

Version: v1.2.0 (fba92ef) 252



Chapter 7: Docker Orchestration and Service Discovery

of server1 or server2. Each service is assigned a different port, 2001 and 2002
respectively.
When the framework runs this will create our two web application workers and
register a service for each on Consul. The application will use the local Consul
node to create the service with the %h configuration shortcut populating the Consul
URL with the right hostname.

Listing 7.54: The Consul plugin URL
url=http://%h.node.consul:8500...

Lastly, we've configured an ENTRYPOINT instruction to automatically run our web
application workers.
Let's build our image now.

Listing 7.55: Building our distributed_app image
$ sudo docker build -t="jamtur01/distributed_app" .

NOTE You can get our distributed_app Dockerfile and configuration and
application files here or on GitHub.

Building our distributed client

We're now going to create a Dockerfile to build our distributed_client image.
Let's create a directory to hold our image first.

Listing 7.56: Creating a distributed_client Dockerfile directory
$ mkdir distributed_client
$ cd distributed_client
$ touch Dockerfile

Now let's look at the Dockerfile for the distributed_client application.

Version: v1.2.0 (fba92ef) 253

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.57: The distributed_client Dockerfile
FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED_AT 2014-06-01

RUN apt-get -qqy update
RUN apt-get -qqy install ruby ruby-dev build-essential
RUN gem install --no-ri --no-rdoc json

RUN mkdir -p /opt/distributed_client
ADD client.rb /opt/distributed_client/

WORKDIR /opt/distributed_client

ENTRYPOINT [ "ruby", "/opt/distributed_client/client.rb" ]
CMD []

The Dockerfile installs Ruby and some prerequisite packages and gems. It creates
the /opt/distributed_client directory and makes it the working directory. It
copies our client application code, contained in the client.rb file, into the /↩
opt/distributed_client directory.
Let's take a quick look at our application code now.

Version: v1.2.0 (fba92ef) 254



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.58: The distributed_client application
require "rubygems"
require "json"
require "net/http"
require "uri"
require "resolv"

uri = URI.parse("http://consul.service.consul:8500/v1/catalog/↩
service/distributed_app")

http = Net::HTTP.new(uri.host, uri.port)
request = Net::HTTP::Get.new(uri.request_uri)
response = http.request(request)

while true
if response.body == "{}"
puts "There are no distributed applications registered in ↩
Consul"

sleep(1)
elsif
result = JSON.parse(response.body)
result.each do |service|
puts "Application #{service['ServiceName']} with element #{↩
service["ServiceID"]} on port #{service["ServicePort"]} ↩
found on node #{service["Node"]} (#{service["Address"]})."

dns = Resolv::DNS.new.getresources("distributed_app.service↩
.consul", Resolv::DNS::Resource::IN::A)

puts "We can also resolve DNS - #{service['ServiceName']} ↩
resolves to #{dns.collect { |d| d.address }.join(" and ")↩
}."

sleep(1)
end

end
end

Version: v1.2.0 (fba92ef) 255



Chapter 7: Docker Orchestration and Service Discovery

Our client checks the Consul HTTP API and the Consul DNS for the presence of
a service called distributed_app. It queries the host consul.service.consul↩
which is the DNS CNAME entry we saw earlier that contains all the A records of
our Consul cluster nodes. This provides us with a simple DNS round robin for our
queries.
If no service is present it puts a message to that effect on the console. If it detects
a distributed_app service then it:

• Parses out the JSON output from the API call and returns some useful infor-
mation to the console.

• Performs a DNS lookup for any A records for that service and returns them
to the console.

This will allow us to see the results of launching our distributed_app containers
on our Consul cluster.
Lastly our Dockerfile specifies an ENTRYPOINT instruction that runs the client↩
.rb application when the container is started.
Let's build our image now.

Listing 7.59: Building our distributed_client image
$ sudo docker build -t="jamtur01/distributed_client" .

NOTE You can get our distributed_client Dockerfile and configuration and
application files here or on GitHub.

Starting our distributed application

Now we've built the required images we can launch our distributed_app applica-
tion container on larry and curly. We've assumed that you have Consul running
as we've configured it earlier in the chapter. Let's start by running one application
instance on larry.

Version: v1.2.0 (fba92ef) 256

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/


Chapter 7: Docker Orchestration and Service Discovery

Listing 7.60: Starting distributed_app on larry
larry$ sudo docker run -h $HOSTNAME -d --name larry_distributed \
jamtur01/distributed_app

Here we've launched the jamtur01/distributed_app image and specified the -h
flag to set the hostname. This is important because we're using this hostname to
tell uWSGI what Consul node to register the service on. We've called our container
larry_distributed and run it daemonized.
If we check the log output from the container we should see uWSGI starting our
web application workers and registering the service on Consul.

Listing 7.61: The distributed_app log output
larry$ sudo docker logs larry_distributed
[uWSGI] getting INI configuration from uwsgi-consul.ini
*** Starting uWSGI 2.0.6 (64bit) on [Tue Sep 2 03:53:46 2014] ↩
***

. . .
[consul] built service JSON: {"Name":"distributed_app","ID":"↩
server1","Check":{"TTL":"30s"},"Port":2001}

[consul] built service JSON: {"Name":"distributed_app","ID":"↩
server2","Check":{"TTL":"30s"},"Port":2002}

[consul] thread for register_url=http://larry.node.consul:8500/v1↩
/agent/service/register check_url=http://larry.node.consul:8500/↩
v1/agent/check/pass/service:server1 name=distributed_app id=↩
server1 started

. . .
Tue Sep 2 03:53:47 2014 - [consul] workers ready, let's register↩

the service to the agent
[consul] service distributed_app registered successfully

We can see a subset of the logs here. We see that uWSGI has started. The Consul
plugin has constructed a service entry for each distributed_app worker and then
registered them with Consul. If we now look at the Consul web interface we
should be able to see our new services.

Version: v1.2.0 (fba92ef) 257

http://www.consul.io/docs/agent/services.html


Chapter 7: Docker Orchestration and Service Discovery

Figure 7.4: The distributed_app service in the Consul web interface.

Let's start some more web application workers on curly now.

Listing 7.62: Starting distributed_app on curly
curly$ sudo docker run -h $HOSTNAME -d --name curly_distributed \
jamtur01/distributed_app

If we check the logs and the Consul web interface we should now see more services
registered.

Version: v1.2.0 (fba92ef) 258



Chapter 7: Docker Orchestration and Service Discovery

Figure 7.5: More distributed_app services in the Consul web interface.

Starting our distributed application client

Now we've got web application workers running on larry and curly let's start our
client on moe and see if we can query data from Consul.

Listing 7.63: Starting distributed_client on moe
moe$ sudo docker run -h $HOSTNAME -d --name moe_distributed \
jamtur01/distributed_client

This time we've run the jamtur01/distributed_client image on moe and created
a container called moe_distributed. Let's look at the log output to see if our
distributed client has found anything about our web application workers.

Version: v1.2.0 (fba92ef) 259



Chapter 7: Docker Orchestration and Service Discovery

Listing 7.64: The distributed_client logs on moe
moe$ sudo docker logs moe_distributed
Application distributed_app with element server2 on port 2002 ↩
found on node larry (104.131.38.54).

We can also resolve DNS - distributed_app resolves to ↩
104.131.38.55 and 104.131.38.54.

Application distributed_app with element server1 on port 2001 ↩
found on node larry (104.131.38.54).

We can also resolve DNS - distributed_app resolves to ↩
104.131.38.54 and 104.131.38.55.

Application distributed_app with element server2 on port 2002 ↩
found on node curly (104.131.38.55).

We can also resolve DNS - distributed_app resolves to ↩
104.131.38.55 and 104.131.38.54.

Application distributed_app with element server1 on port 2001 ↩
found on node curly (104.131.38.55).

We can see that our distributed_client application has queried the HTTP API
and found service entries for distributed_app and its server1 and server2↩
workers on both larry and curly. It has also done a DNS lookup to discover the
IP address of the nodes running that service, 104.131.38.54 and 104.131.38.55.
If this was a real distributed application our client and our workers could take
advantage of this information to configure, connect, route between elements of
the distributed application. This provides a simple, easy and resilient way to build
distributed applications running inside separate Docker containers and hosts.

Orchestration alternatives and components
As we mentioned earlier, Fig and Consul aren't the only games in town when it
comes to Docker orchestration tools. There's a fast growing ecosystem of them.
This is a non-comprehensive list of some of the tools available in that ecosystem.
Not all of them have matching functionality and broadly fall into two categories:

Version: v1.2.0 (fba92ef) 260



Chapter 7: Docker Orchestration and Service Discovery

• Scheduling and cluster management.
• Service discovery.

NOTE All of the tools listed are open source under various licenses.

Fleet and etcd
Fleet and etcd are released by the CoreOS team. Fleet is a cluster management tool
and etcd is highly-available key value store for shared configuration and service
discovery. Fleet combines systemd and etcd to provide cluster management and
scheduling for Docker containers. Think of it as an extension of systemd that
operates at the cluster level instead of the machine level.
It's a fairly new project and it is currently only available as a preview release.

Kubernetes
Kubernetes is a container cluster management tool open sourced by Google. It
allows you to deploy and scale applications using Docker across multiple hosts.
Kubernetes is primarily targeted at applications comprised of multiple containers,
such as elastic, distributed micro-services.
It's a relatively new and lacks comprehensive documentation but is rapidly grow-
ing a community around it.

Apache Mesos
The Apache Mesos project is a highly-available cluster management tool. Not
specifically designed to work with Docker it instead has an interface, Deimos, to
allow you to use Docker containers with Mesos. Mesos is popular with a number
of startups, notably Twitter and AirBnB.

Version: v1.2.0 (fba92ef) 261

https://coreos.com/
https://github.com/coreos/fleet
https://github.com/coreos/etcd
https://github.com/GoogleCloudPlatform/kubernetes
http://mesos.apache.org/
https://github.com/mesosphere/deimos


Chapter 7: Docker Orchestration and Service Discovery

Helios
The Helios project has been released by the team at Spotify and is a Docker orches-
tration platform for deploying and managing containers across an entire fleet. It
creates a "job" abstraction that you can deploy to one or more Helios hosts running
Docker.

Centurion
Centurion is focussed on being a Docker-based deployment tool open sourced by
the New Relic team. Centurion takes containers from a Docker registry and runs
them on a fleet of hosts with the correct environment variables, host volume map-
pings, and port mappings. It is designed to help you do continuous deployment
with Docker.

Libswarm
Docker Inc's own orchestration efforts are focussed around Libswarm. Libswarm is
more of a library or toolkit and is designed to help you compose network services.
It provides standard interfaces for connecting services across distributed systems.
It's got some initial, Docker-focussed services, but is building a library of services
to allow you to integrate a variety of other services, including many of those listed
in this section.

Summary
In this chapter we've introduced you to orchestration with Fig. We've shown you
how to add a Fig configuration file to create simple application stacks. We've
shown you how to run Fig and build those stacks and how to perform basic man-
agement tasks on them.

Version: v1.2.0 (fba92ef) 262

https://github.com/spotify/helios
https://github.com/newrelic/centurion
https://github.com/docker/libswarm


Chapter 7: Docker Orchestration and Service Discovery

We've also shown you a service discovery tool, Consul. We've installed Consul
onto Docker and created a cluster of Consul nodes. We've also demonstrated how
a simple distributed application might work on Docker.
Finally, we've seen some of the other orchestration tools available to us in the
Docker ecosystem.
In the next chapter we'll look at the Docker API, how we can use it, and how we
can secure connections to our Docker daemon via TLS.

Version: v1.2.0 (fba92ef) 263



Chapter 8

Using the Docker API

In Chapter 6, we saw some excellent examples of how to run services and build
applications and workflow around Docker. One of those examples, the TProv
application, focused on using the docker binary on the command line and cap-
turing the resulting output. This is not a very elegant approach to integrating
with Docker; especially when Docker comes with a powerful API you can use to
integrate directly.
In this chapter, we're going to introduce you to the Docker API and see how we
can make use of it. We're going to take you through binding the Docker daemon
on a network port. We'll then take you through the API at a high level and hit on
the key aspects of it. We'll also look at the TProv application we saw in Chapter 6
and rewrite some portions of it to use the API instead of the docker binary. Lastly,
we'll look at authenticating the API via TLS.

The Docker APIs
There are three specific APIs in the Docker ecosystem.

• The Registry API - provides integration with the Docker registry, which
stores our images.

• The Docker Hub API - provides integration with the Docker Hub.

264

http://docs.docker.com/reference/api/
http://hub.docker.com


Chapter 8: Using the Docker API

• The Docker Remote API - provides integration with the Docker daemon.

All three APIs are broadly RESTful. In this chapter, we'll focus on the Remote API
because it is key to any programmatic integration and interaction with Docker.

First steps with the Remote API
Let's explore the Docker Remote API and see its capabilities. Firstly, we need
to remember the Remote API is provided by the Docker daemon. By default, the
Docker daemons binds to a socket, unix:///var/run/docker.sock, on the host on
which it is running. The daemon runs with root privileges so as to have the access
needed to manage the appropriate resources. As we also discovered in Chapter 2,
if a group named docker exists on your system, Docker will apply ownership of
the socket to that group. Hence, any user that belongs to the docker group can
run Docker without needing root privileges.

WARNING Remember that although the docker group makes life easier, it
is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications that absolutely need it.

This works fine if we're querying the API from the same host running Docker, but
if we want remote access to the API, we need to bind the Docker daemon to a
network interface. This is done by passing or adjusting the -H flag to the Docker
daemon.
On most distributions, we can do this by editing the daemon's startup configura-
tion files. For Ubuntu or Debian, this would be the /etc/default/docker file; for
those releases with Upstart, it would be the /etc/init/docker.conf file. For Red
Hat, Fedora, and related distributions, it would be the /etc/sysconfig/docker
file; for those releases with Systemd, it is the /usr/lib/systemd/system/docker↩
.service file.

Version: v1.2.0 (fba92ef) 265

http://en.wikipedia.org/wiki/Representational_state_transfer


Chapter 8: Using the Docker API

Let's bind the Docker daemon to a network interface on a Red Hat derivative
running Systemd. We'll edit the /usr/lib/systemd/system/docker.service file
and change:

Listing 8.1: Default systemd daemon start options
ExecStart=/usr/bin/docker -d --selinux-enabled

To:

Listing 8.2: Network binding systemd daemon start options
ExecStart=/usr/bin/docker -d --selinux-enabled -H tcp↩
://0.0.0.0:2375

This will bind the Docker daemon to all interfaces on the host using port 2375.
We then need to reload and restart the daemon using the systemctl command.

Listing 8.3: Reloading and restarting the Docker daemon
$ sudo systemctl --system daemon-reload

TIP You'll also need to ensure that any firewall on the Docker host or between
you and the host allows TCP communication to the IP address on port 2375.

We can now test that this is working using the docker client binary, passing the
-H flag to specify our Docker host. Let's connect to our Docker daemon from a
remote host.

Version: v1.2.0 (fba92ef) 266



Chapter 8: Using the Docker API

Listing 8.4: Connecting to a remote Docker daemon
$ sudo docker -H docker.example.com:2375 info
Containers: 0
Images: 0
Driver: devicemapper
Pool Name: docker-252:0-133394-pool
Data file: /var/lib/docker/devicemapper/devicemapper/data
Metadata file: /var/lib/docker/devicemapper/devicemapper/↩
metadata

. . .

This assumes the Docker host is called docker.example.com; we've used the -↩
H flag to specify this host. Docker will also honor the DOCKER_HOST environment
variable rather than requiring the continued use of the -H flag.

Listing 8.5: Revisiting the DOCKER_HOST environment variable
$ export DOCKER_HOST="tcp://docker.example.com:2375"

WARNING Remember this connection is unauthenticated and open to the
world! Later in this chapter, we'll see how we can add authentication to this
connection.

Testing the Docker Remote API
Now that we've established and confirmed connectivity to the Docker daemon via
the docker binary, let's try to connect directly to the API. To do so, we're going to
use the curl command. We're going to connect to the info API endpoint, which
provides roughly the same information as the docker info command.

Version: v1.2.0 (fba92ef) 267



Chapter 8: Using the Docker API

Listing 8.6: Using the info API endpoint
$ curl http://docker.example.com:2375/info
{
"Containers": 0,
"Debug": 0,
"Driver": "devicemapper",
. . .
"IPv4Forwarding": 1,
"Images": 0,
"IndexServerAddress": "https://index.docker.io/v1/",
"InitPath": "/usr/libexec/docker/dockerinit",
"InitSha1": "dafd83a92eb0fc7c657e8eae06bf493262371a7a",
"KernelVersion": "3.9.8-300.fc19.x86_64",
"LXCVersion": "0.9.0",
"MemoryLimit": 1,
"NEventsListener": 0,
"NFd": 10,
"NGoroutines": 14,
"SwapLimit": 0

}

We've connected to the Docker API on http://docker.example.com:2375 using
the curl command, and we've specified the path to the Docker API: docker.↩
example.com on port 2375 with endpoint info.
We can see that the API has returned a JSON hash, of which we've included a sam-
ple, containing the system information for the Docker daemon. This demonstrates
that the Docker API is working and we're getting some data back.

Managing images with the API
Let's start with some API basics: working with Docker images. We're going to start
by getting a list of all the images on our Docker daemon.

Version: v1.2.0 (fba92ef) 268



Chapter 8: Using the Docker API

Listing 8.7: Getting a list of images via API
$ curl http://docker.example.com:2375/images/json | python -mjson↩
.tool

[
{
"Created": 1404088258,
"Id": "2↩
e9e5fdd46221b6d83207aa62b3960a0472b40a89877ba71913998ad9743e065↩
",

"ParentId": "7↩
cd0eb092704d1be04173138be5caee3a3e4bea5838dcde9ce0504cdc1f24cbb↩
",

"RepoTags": [
"docker:master"

],
"Size": 186470239,
"VirtualSize": 1592910576

},
. . .
{
"Created": 1403739688,
"Id": "15↩
d0178048e904fee25354db77091b935423a829f171f3e3cf27f04ffcf7cf56↩
",

"ParentId": "74830↩
af969b02bb2cec5fe04bb2e168a4f8d3db3ba504e89cacba99a262baf48"↩
,

"RepoTags": [
"jamtur01/jekyll:latest"

],
"Size": 0,
"VirtualSize": 607622922

}
. . .
]

Version: v1.2.0 (fba92ef) 269



Chapter 8: Using the Docker API

NOTE We've passed the output through Python's JSON tool to prettify it.

We've used the /images/json endpoint, which will return a list of all images on the
Docker daemon. It'll give us much the same information as the docker images↩
command. We can also query specific images via ID, much like docker inspect
on an image ID.

Listing 8.8: Getting a specific image
curl http://docker.example.com:2375/images/15↩
d0178048e904fee25354db77091b935423a829f171f3e3cf27f04ffcf7cf56/↩
json | python -mjson.tool

{
"Architecture": "amd64",
"Author": "James Turnbull <james@example.com>",
"Comment": "",
"Config": {

"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [

"--config=/etc/jekyll.conf"
],

. . .
}

Here we can see a subset of the output of inspecting our jamtur01/jekyll image.
And finally, like the command line, we can search for images on the Docker Hub.

Version: v1.2.0 (fba92ef) 270



Chapter 8: Using the Docker API

Listing 8.9: Searching for images with the API
$ curl "http://docker.example.com:2375/images/search?term=↩
jamtur01" | python -mjson.tool

[
{

"description": "",
"is_official": false,
"is_trusted": true,
"name": "jamtur01/docker-presentation",
"star_count": 2

},
{

"description": "",
"is_official": false,
"is_trusted": false,
"name": "jamtur01/dockerjenkins",
"star_count": 1

},
. . .
]

Here we've searched for all images containing the term jamtur01 and displayed a
subset of the output returned. This is just a sampling of the actions we can take
with the Docker API. We can also build, update, and remove images.

Managing containers with the API
The Docker Remote API also exposes all of the container operations available to
us on the command line. We can list running containers using the /containers
endpoint much as we would with the docker ps command.

Version: v1.2.0 (fba92ef) 271



Chapter 8: Using the Docker API

Listing 8.10: Listing running containers
$ curl -s "http://docker.example.com:2375/containers/json" | ↩
python -mjson.tool

[
{

"Command": "/bin/bash",
"Created": 1404319520,
"Id": "↩
cf925ad4f3b9fea231aee386ef122f8f99375a90d47fc7cbe43fac1d962dc51b↩
",

"Image": "ubuntu:14.04",
"Names": [

"/desperate_euclid"
],
"Ports": [],
"Status": "Up 3 seconds"

}
]

Our query will show all running containers on the Docker host, in our case, a
single container. To see running and stopped containers, we can add the all flag
to the endpoint and set it to 1.

Listing 8.11: Listing all containers via the API
http://docker.example.com:2375/containers/json?all=1

We can also use the API to create containers by using a POST request to the /↩
containers/create endpoint. Here is the simplest possible container creation API
call.

Version: v1.2.0 (fba92ef) 272



Chapter 8: Using the Docker API

Listing 8.12: Creating a container via the API
$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/create \
-d '{

"Image":"jamtur01/jekyll"
}'
{"Id":"591↩
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3","↩
Warnings":null}

We call the /containers/create endpoint and POST a JSON hash containing an
image name to the endpoint. The API returns the ID of the container we've just
created and potentially any warnings. This will create a container.
We can further configure our container creation by adding key/value pairs to our
JSON hash.

Listing 8.13: Configuring container launch via the API
$ curl -X POST -H "Content-Type: application/json" \
"http://docker.example.com:2375/containers/create?name=jekyll" \
-d '{

"Image":"jamtur01/jekyll",
"Hostname":"jekyll"

}'
{"Id":"591↩
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3","↩
Warnings":null}

Here we've specified the Hostname key with a value of jekyll to set the hostname
of the resulting container.
To start the container we use the /containers/start endpoint.

Version: v1.2.0 (fba92ef) 273



Chapter 8: Using the Docker API

Listing 8.14: Starting a container via the API
$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/591↩
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3/↩
start \

-d '{
"PublishAllPorts":true

}'

In combination, this provides the equivalent of running:

Listing 8.15: API equivalent for docker run command
$ sudo docker run jamtur01/jekyll

We can also inspect the resulting container via the /containers/ endpoint.

Version: v1.2.0 (fba92ef) 274



Chapter 8: Using the Docker API

Listing 8.16: Listing all containers via the API
$ curl http://docker.example.com:2375/containers/591↩
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3/↩
json | python -mjson.tool

{
"Args": [

"build",
"--destination=/var/www/html"

],
. . .

"Hostname": "591ba02d8d14",
"Image": "jamtur01/jekyll",

. . .
"Id": "591↩
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3↩
",

"Image": "29↩
d4355e575cff59d7b7ad837055f231970296846ab58a037dd84be520d1cc31↩
",

. . .
"Name": "/hopeful_davinci",

. . .
}

Here we can see we've queried our container using the container ID and shown a
sampling of the data available to us.

Improving TProv
Now let's look at the methods inside the TProv application that we used in Chapter
6. We're going to look specifically at the methods which create and delete Docker
containers.

Version: v1.2.0 (fba92ef) 275



Chapter 8: Using the Docker API

Listing 8.17: The legacy TProv container launch methods
def get_war(name, url)
cid = `docker run --name #{name} jamtur01/fetcher #{url} 2>&1`.↩
chop

puts cid
[$?.exitstatus == 0, cid]

end

def create_instance(name)
cid = `docker run -P --volumes-from #{name} -d -t jamtur01/↩
tomcat7 2>&1`.chop

[$?.exitstatus == 0, cid]
end

def delete_instance(cid)
kill = `docker kill #{cid} 2>&1`
[$?.exitstatus == 0, kill]

end

NOTE You can see the previous TProv code at here or on Git Hub.

Pretty crude, eh? We're directly calling out to the docker binary and capturing its
output. There are lots of reasons that that will be problematic, not least of which
is that you can only run the TProv application somewhere with the Docker client
installed.
We can improve on this interface by using the Docker API via one of its client
libraries, in this case the Ruby Docker-API client library.

TIP You can find a full list of the available client libraries here. There are client
libraries for Ruby, Python, Node.JS, Go, Erlang, Java, and others.

Version: v1.2.0 (fba92ef) 276

http://dockerbook.com/code/6/tprov/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/tprov
https://github.com/swipely/docker-api
http://docs.docker.com/reference/api/remote_api_client_libraries/


Chapter 8: Using the Docker API

Let's start by looking at how we establish our connection to the Docker API.

Listing 8.18: The Docker Ruby client
require 'docker'
. . .

module TProv
class Application < Sinatra::Base

. . .

Docker.url = ENV['DOCKER_URL'] || 'http://localhost:2375'
Docker.options = {
:ssl_verify_peer => false

}

We've added a require for the docker-api gem. We'd need to install this gem first
to get things to work or add it to the TProv application's gem specification.
We can then use the Docker.url method to specify the location of the Docker
host we wish to use. In our code, we specify this via an environment variable,
DOCKER_URL, or use a default of http://localhost:2375.
We've also used the Docker.options to specify options we want to pass to the
Docker daemon connection.
We can test this idea using the IRB shell locally. Let's try that now. You'll need
to have Ruby installed on the host on which you are testing. Let's assume we're
using a Fedora host.

Version: v1.2.0 (fba92ef) 277



Chapter 8: Using the Docker API

Listing 8.19: Installing the Docker Ruby client API prerequisites
$ sudo yum -y install ruby ruby-irb
. . .
$ sudo gem install docker-api json
. . .

Now we can use irb to test our Docker API connection.

Listing 8.20: Testing our Docker API connection via irb

$ irb
irb(main):001:0> require 'docker'; require 'pp'
=> true
irb(main):002:0> Docker.url = 'http://docker.example.com:2375'
=> "http://docker.example.com:2375"
irb(main):003:0> Docker.options = { :ssl_verify_peer => false }
=> {:ssl_verify_peer=>false}
irb(main):004:0> pp Docker.info
{"Containers"=>9,
"Debug"=>0,
"Driver"=>"aufs",
"DriverStatus"=>[["Root Dir", "/var/lib/docker/aufs"], ["Dirs", ↩
"882"]],

"ExecutionDriver"=>"native-0.2",
. . .
irb(main):005:0> pp Docker.version
{"ApiVersion"=>"1.12",
"Arch"=>"amd64",
"GitCommit"=>"990021a",
"GoVersion"=>"go1.2.1",
"KernelVersion"=>"3.8.0-29-generic",
"Os"=>"linux",
"Version"=>"1.0.1"}
. . .

Version: v1.2.0 (fba92ef) 278



Chapter 8: Using the Docker API

We can see that we've launched irb and loaded the docker gem (via a require↩
) and the pp library to help make our output look nicer. We've then specified
the Docker.url and Docker.options methods to set the target Docker host and
our required options (here disabling SSL peer verification to use TLS, but not
authenticate the client).
We've then run two global methods, Docker.info and Docker.version, which
provide the Ruby client API equivalents of the binary commands docker info
and docker version.
We can now update our TProv container management methods to use the API via
the docker-api client library. Let's look at some code that does this now.

Listing 8.21: Our updated TProv container management methods
def get_war(name, url)
container = Docker::Container.create('Cmd' => url, 'Image' => '↩
jamtur01/fetcher', 'name' => name)

container.start
container.id

end

def create_instance(name)
container = Docker::Container.create('Image' => 'jamtur01/↩
tomcat7')

container.start('PublishAllPorts' => true, 'VolumesFrom' => ↩
name)

container.id
end

def delete_instance(cid)
container = Docker::Container.get(cid)
container.kill

end

You can see we've replaced the previous binary shell with a rather cleaner im-
plementation using the Docker API. Our get_war method creates and starts our

Version: v1.2.0 (fba92ef) 279



Chapter 8: Using the Docker API

jamtur01/fetcher container using the Docker::Container.create and Docker↩
::Container.startmethods. The create_instancemethod does the same for the
jamtur01/tomcat7 container. Finally, our delete_instance method has been up-
dated to retrieve a container using the container ID via the Docker::Container↩
.get method. We then kill the container with the Docker::Container.kill↩
method.

NOTE You can see the updated TProv code at here or on Git Hub.

Authenticating the Docker Remote API
Whilst we've shown that we can connect to the Docker Remote API, that means
that anyone else can also connect to the API. That poses a bit of a security issue.
Thankfully, the Remote API has an authentication mechanism that has been avail-
able since the 0.9 release of Docker. The authentication uses TLS/SSL certificates
to secure your connection to the API.

TIP This authentication applies to more than just the API. By turning this au-
thentication on, you will also need to configure our Docker client to support TLS
authentication. We'll see how to do that in this section, too.

There are a couple of ways we could authenticate our connection, including using
a full PKI infrastructure, either creating our own Certificate Authority (CA) or
using an existing CA. We're going to create our own certificate authority because
it is a simple and fast way to get started.

WARNING This relies on a local CA running on your Docker host. This is
not as secure as using a full-fledged Certificate Authority.

Version: v1.2.0 (fba92ef) 280

http://dockerbook.com/code/8/tprov_api/
https://github.com/jamtur01/dockerbook-code/tree/master/code/8/tprov_api


Chapter 8: Using the Docker API

Create a Certificate Authority
We're going to quickly step through creating the required CA certificate and key,
as it is a pretty standard process on most platforms. It requires the openssl binary
as a prerequisite.

Listing 8.22: Checking for openssl
$ which openssl
/usr/bin/openssl

Let's create a directory on our Docker host to hold our CA and related materials.

Listing 8.23: Create a CA directory
$ sudo mkdir /etc/docker

Now let's create our CA.
We first generate a private key.

Listing 8.24: Generating a private key
$ cd /etc/docker
$ echo 01 | sudo tee ca.srl
$ sudo openssl genrsa -des3 -out ca-key.pem
Generating RSA private key, 512 bit long modulus
....++++++++++++
.................++++++++++++
e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:
Verifying - Enter pass phrase for ca-key.pem:

We'll specify a passphrase for the CA key, make note of this phrase, and secure it.
We'll need it to create and sign certificates with our new CA.

Version: v1.2.0 (fba92ef) 281



Chapter 8: Using the Docker API

This also creates a new file called ca-key.pem. This is our CA key; we'll not want
to share it or lose it, as it is integral to the security of our solution.
Now let's create a CA certificate.

Listing 8.25: Creating a CA certificate
$ sudo openssl req -new -x509 -days 365 -key ca-key.pem -out ca.↩
pem

Enter pass phrase for ca-key.pem:
You are about to be asked to enter information that will be ↩
incorporated

into your certificate request.
What you are about to enter is what is called a Distinguished ↩
Name or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:docker.example.com
Email Address []:

This will create the ca.pem file that is the certificate for our CA. We'll need this
later to verify our secure connection.
Now that we have our CA, let's use it to create a certificate and key for our Docker
server.

Create a server certificate signing request and key
We can use our new CA to sign and validate a certificate signing request or CSR
and key for our Docker server. Let's start with creating a key for our server.

Version: v1.2.0 (fba92ef) 282



Chapter 8: Using the Docker API

Listing 8.26: Creating a server key
$ sudo openssl genrsa -des3 -out server-key.pem
Generating RSA private key, 512 bit long modulus
...................++++++++++++
...............++++++++++++
e is 65537 (0x10001)
Enter pass phrase for server-key.pem:
Verifying - Enter pass phrase for server-key.pem:

This will create our server key, server-key.pem. As above, we need to keep this
key safe: it's what secures our Docker server.

NOTE Specify any pass phrase here. We're going to strip it out before we use
the key. You'll only need it for the next couple of steps.

Next let's create our server certificate signing request (CSR).

Version: v1.2.0 (fba92ef) 283



Chapter 8: Using the Docker API

Listing 8.27: Creating our server CSR
$ sudo openssl req -new -key server-key.pem -out server.csr
Enter pass phrase for server-key.pem:
You are about to be asked to enter information that will be ↩
incorporated

into your certificate request.
What you are about to enter is what is called a Distinguished ↩
Name or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:*
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

This will create a file called server.csr. This is the request that our CA will sign
to create our server certificate. The most important option here is Common Name or
CN. This should either be the FQDN (fully qualified domain name) of the Docker
server (i.e., what is resolved to in DNS; for example, docker.example.com) or *,
which will allow us to use the server certificate on any server.
Now let's sign our CSR and generate our server certificate.

Version: v1.2.0 (fba92ef) 284



Chapter 8: Using the Docker API

Listing 8.28: Signing our CSR
$ sudo openssl x509 -req -days 365 -in server.csr -CA ca.pem \
-CAkey ca-key.pem -out server-cert.pem
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*
Getting CA Private Key
Enter pass phrase for ca-key.pem:

We'll enter the passphrase of the CA's key file, and a file called server-cert.pem
will be generated. This is our server's certificate.
Now let's strip out the passphrase from our server key. We can't enter one when
the Docker daemon starts, so we need to remove it.

Listing 8.29: Removing the passphrase from the server key
$ sudo openssl rsa -in server-key.pem -out server-key.pem
Enter pass phrase for server-key.pem:
writing RSA key

Now let's add some tighter permissions to the files to better protect them.

Listing 8.30: Securing the key and certificate on the Docker server
$ sudo chmod 0600 /etc/docker/server-key.pem /etc/docker/server-↩
cert.pem \

/etc/docker/ca-key.pem /etc/docker/ca.pem

Configuring the Docker daemon
Now that we've got our certificate and key, let's configure the Docker daemon to
use them. As we did to expose the Docker daemon to a network socket, we're
going to edit its startup configuration. As before, for Ubuntu or Debian, we'll edit
the /etc/default/docker file; for those distributions with Upstart, it's the /etc↩
/init/docker.conf file. For Red Hat, Fedora, and related distributions, we'll edit

Version: v1.2.0 (fba92ef) 285



Chapter 8: Using the Docker API

the /etc/sysconfig/docker file; for those releases with Systemd, it's the /usr/↩
lib/systemd/system/docker.service file.
Let's again assume a Red Hat derivative running Systemd and edit the /usr/lib↩
/systemd/system/docker.service file:

Listing 8.31: Enabling Docker TLS on systemd
ExecStart=/usr/bin/docker -d -H tcp://0.0.0.0:2376 --tlsverify --↩
tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server-cert.↩
pem --tlskey=/etc/docker/server-key.pem

NOTE You can see that we've used port number 2376; this is the default TLS/SSL
port for Docker. You should only use 2375 for unauthenticated connections.

This code will enable TLS using the --tlsverify flag. We've also specified the
location of our CA certificate, certificate, and key using the --tlscacert, --↩
tlscert and --tlskey flags, respectively. There are a variety of other TLS options
that we could also use.

TIP You can use the --tls flag to enable TLS, but not client-side authentication.

We then need to reload and restart the daemon using the systemctl command.

Listing 8.32: Reloading and restarting the Docker daemon
$ sudo systemctl --system daemon-reload

Version: v1.2.0 (fba92ef) 286

http://docs.docker.com/articles/https/


Chapter 8: Using the Docker API

Creating a client certificate and key
Our server is now TLS enabled; next, we need to create and sign a certificate and
key to secure our Docker client. Let's start with a key for our client.

Listing 8.33: Creating a client key
$ sudo openssl genrsa -des3 -out client-key.pem
Generating RSA private key, 512 bit long modulus
..........++++++++++++
.......................................++++++++++++
e is 65537 (0x10001)
Enter pass phrase for client-key.pem:
Verifying - Enter pass phrase for client-key.pem:

This will create our key file client-key.pem. Again, we'll need to specify a tem-
porary passphrase to use during the creation process.
Now let's create a client CSR.

Version: v1.2.0 (fba92ef) 287



Chapter 8: Using the Docker API

Listing 8.34: Creating a client CSR
$ sudo openssl req -new -key client-key.pem -out client.csr
Enter pass phrase for client-key.pem:
You are about to be asked to enter information that will be ↩
incorporated

into your certificate request.
What you are about to enter is what is called a Distinguished ↩
Name or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

We next need to enable client authentication for our key by adding some extended
SSL attributes.

Listing 8.35: Adding Client Authentication attributes
$ echo extendedKeyUsage = clientAuth > extfile.cnf

Now let's sign our CSR with our CA.

Version: v1.2.0 (fba92ef) 288



Chapter 8: Using the Docker API

Listing 8.36: Signing our client CSR
$ sudo openssl x509 -req -days 365 -in client.csr -CA ca.pem \
-CAkey ca-key.pem -out client-cert.pem -extfile extfile.cnf
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd
Getting CA Private Key
Enter pass phrase for ca-key.pem:

Again, we use the CA key's passphrase and generate another certificate: client↩
-cert.pem.
Finally, we strip the passphrase from our client-key.pem file to allow us to use
it with the Docker client.

Listing 8.37: Stripping out the client key pass phrase
$ sudo openssl rsa -in client-key.pem -out client-key.pem
Enter pass phrase for client-key.pem:
writing RSA key

Configuring our Docker client for authentication
Next let's configure our Docker client to use our new TLS configuration. We need
to do this because the Docker daemon now expects authenticated connections for
both the client and the API.
We'll need to copy our ca.pem, client-cert.pem, and client-key.pem files to the
host on which we're intending to run the Docker client.

TIP Remember that these keys provide root-level access to the Docker daemon.
You should protect them carefully.

Let's install them into the .docker directory. This is the default location where

Version: v1.2.0 (fba92ef) 289



Chapter 8: Using the Docker API

Docker will look for certificates and keys. Docker will specifically look for key↩
.pem, cert.pem, and our CA certificate: ca.pem.

Listing 8.38: Copying the key and certificate on the Docker client
$ mkdir -p ~/.docker/
$ cp ca.pem ~/.docker/ca.pem
$ cp client-key.pem ~/.docker/key.pem
$ cp client-cert.pem ~/.docker/cert.pem
$ chmod 0600 ~/.docker/key.pem ~/.docker/cert.pem

Now let's test the connection to the Docker daemon from the client. To do this,
we're going to use the docker info command.

Listing 8.39: Testing our TLS-authenticated connection
$ sudo docker -H=docker.example.com:2376 --tlsverify info
Containers: 33
Images: 104
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Dirs: 170
Execution Driver: native-0.1
Kernel Version: 3.8.0-29-generic
Username: jamtur01
Registry: [https://index.docker.io/v1/]
WARNING: No swap limit support

We can see that we've specified the -H flag to tell the client to which host it should
connect. We could instead specify the host using the DOCKER_HOST environment
variable if we didn't want to specify the -H flag each time. We've also specified the
--tlsverify flag, which enables our TLS connection to the Docker daemon. We
don't need to specify any certificate or key files, because Docker has automatically
looked these up in our ~/.docker/ directory. If we did need to specify these files,
we could with the --tlscacert, --tlscert, and --tlskey flags.
So what happens if we don't specify a TLS connection? Let's try again now without

Version: v1.2.0 (fba92ef) 290



Chapter 8: Using the Docker API

the --tlsverify flag.

Listing 8.40: Testing our TLS-authenticated connection
$ sudo docker -H=docker.example.com:2376 info
2014/04/13 17:50:03 malformed HTTP response "\x15\x03\x01\x00\x02↩
\x02"

Ouch. That's not good. If you see an error like this, you know you've probably not
enabled TLS on the connection, you've not specified the right TLS configuration,
or you have an incorrect certificate or key.
Assuming you've got everything working, you should now have an authenticated
Docker connection!

Summary
In this chapter, we've been introduced to the Docker Remote API. We've also seen
how to secure the Docker Remote API via SSL/TLS certificates. We've explored the
Docker API and how to use it to manage images and containers. We've also seen
how to use one of the Docker API client libraries to rewrite our TProv application
to directly use the Docker API.
In the next and last chapter, we'll look at how you can contribute to Docker.

Version: v1.2.0 (fba92ef) 291



Chapter 9

Getting help and extending Docker

Docker is in its infancy -- sometimes things go wrong. This chapter will talk about:

• How and where to get help.
• Contributing fixes and features to Docker.

You'll find out where to find Docker folks and the best way to ask for help. You'll
also learn how to engage with Docker's developer community: there's a huge
amount of development effort surrounding Docker with hundreds of committers
in the open-source community. If you're excited by Docker, then it's easy to make
your own contribution to the project. This chapter will also cover the basics of
contributing to the Docker project, how to build a Docker development environ-
ment, and how to create a good pull request.

NOTE This chapter assumes some basic familiarity with Git, GitHub, and Go,
but doesn't assume you're a fully fledged developer.

292



Chapter 9: Getting help and extending Docker

Getting help
The Docker community is large and friendly. There's a central Help page on the
Docker site that provides a list of all the places to get help. Generally, however,
most Docker folks congregate in three places:

NOTE Docker, Inc. also sells enterprise support for Docker. You can find the
information on the help page.

The Docker user and dev mailing lists
These mailing lists are here:

• Docker user list
• Docker developer list

The Docker user list is generally for Docker usage or help questions. The Docker
dev list is for more development-focused questions and issues.

Docker on IRC
The Docker community also has two strong IRC channels: #docker and #docker↩
-dev. Both are on the Freenode IRC network
The #docker channel is generally for user help and general Docker issues, whereas
#docker-dev is where contributors to Docker's source code gather.
You can find logs for #docker here and for #docker-dev here.

Version: v1.2.0 (fba92ef) 293

http://www.docker.com/resources/help/
http://www.docker.com/resources/help/
https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-dev
http://freenode.net/
https://botbot.me/freenode/docker/
https://botbot.me/freenode/docker-dev/


Chapter 9: Getting help and extending Docker

Docker on GitHub
Docker (and most of its components and ecosystem) is hosted on GitHub. The
principal repository for Docker itself is here.
Other repositories of note are:

• docker-registry - The stand-alone Docker registry.
• libcontainer - The Docker container format.
• libswarm - Docker's orchestration framework.

Reporting issues for Docker
Let's start with the basics around submitting issues and patches and interacting
with the Docker community. When reporting issues with Docker, it's important to
be an awesome open-source citizen and provide good information that can help
the community resolve your issue. When you log a ticket, please remember to
include the following background information:

• The output of docker info and docker version.
• The output of uname -a.
• Your operating system and version (e.g., Ubuntu 14.04).

Then provide a detailed explanation of your problem and the steps others can take
to reproduce it.
If you're logging a feature request, carefully explain what you want and how you
propose it might work. Think carefully about generic use cases: is your feature
something that will make life easier for just you or for everyone?
Please take a moment to check that an issue doesn't already exist documenting
your bug report or feature request. If it does, you can add a quick "+1" or "I have
this problem too", or if you feel your input expands on the proposed implementa-
tion or bug fix, then add a more substantive update.

Version: v1.2.0 (fba92ef) 294

http://www.github.com
https://github.com/docker/docker/
https://github.com/docker/docker-registry
https://github.com/docker/libcontainer
https://github.com/docker/libswarm
https://github.com/docker/docker/issues


Chapter 9: Getting help and extending Docker

Setting up a build environment
To make it easier to contribute to Docker, we're going to show you how to build
a development environment. The development environment provides all of the
required dependencies and build tooling to work with Docker.

Install Docker
You must first install Docker in order to get a development environment, because
the build environment is a Docker container in its own right. We use Docker to
build and develop Docker. Use the steps from Chapter 2 to install Docker on your
local host. You should install the most recent version of Docker available.

Install source and build tools
Next, you need to install Make and Git so that we can check out the Docker source
code and run the build process. The source code is stored on GitHub, and the build
process is built around a Makefile.
On Ubuntu, we would install the git package.

Listing 9.1: Installing git on Ubuntu
$ sudo apt-get -y install git make

On Red Hat and derivatives we would do the following:

Listing 9.2: Installing git on Red Hat et al
$ sudo yum install git make

Check out the source
Now let's check out the Docker source code (or, if you're working on another
component, the relevant source code repository) and change into the resulting

Version: v1.2.0 (fba92ef) 295



Chapter 9: Getting help and extending Docker

directory.

Listing 9.3: Check out the Docker source code
$ git clone https://github.com/docker/docker.git
$ cd docker

You can now work on the source code and fix bugs, update documentation, and
write awesome features!

Contributing to the documentation
One of the great ways anyone, even if you're not a developer or skilled in Go, can
contribute to Docker is to update, enhance, or develop new documentation. The
Docker documentation lives on the Docs website. The source documentation, the
theme, and the tooling that generates this site are stored in the Docker repo on
GitHub.
You can find specific guidelines and a basic style guide for the documentation
here.
You can build the documentation locally using Docker itself.
Make any changes you want to the documentation, and then you can use the
make command to build the documentation.

Listing 9.4: Building the Docker documentation
$ cd docker
$ make docs
. . .
docker run --rm -it -e AWS_S3_BUCKET -p 8000:8000 "docker-docs:↩
master" mkdocs serve

Running at: http://0.0.0.0:8000/
Live reload enabled.
Hold ctrl+c to quit.

You can then browse to a local version of the Docker documentation on port 8000.

Version: v1.2.0 (fba92ef) 296

http://docs.docker.com
https://github.com/docker/docker/tree/master/docs
https://github.com/docker/docker/tree/master/docs
https://github.com/docker/docker/blob/master/docs/README.md


Chapter 9: Getting help and extending Docker

Build the environment
If you want to contribute to more than just the documentation, you can now use
make and Docker to build the development environment. The Docker source code
ships with a Dockerfile that we use to install all the build and runtime dependen-
cies necessary to build and test Docker.

Listing 9.5: Building the Docker environment
$ sudo make build

TIP This command will take some time to complete when you first execute it.

This command will create a full, running Docker development environment. It
will upload the current source directory as build context for a Docker image, build
the image containing Go and any other required dependencies, and then launch
a container from this image.
Using this development image, we can also create a Docker binary to test any fixes
or features. We do this using the make tool again.

Listing 9.6: Building the Docker binary
$ sudo make binary

This command will create a Docker binary in a volume at ./bundles/<version↩
>-dev/binary/. For example, we would create a binary like so:

Listing 9.7: The Docker dev binary
$ ls -l ~/docker/bundles/1.0.1-dev/binary/docker
lrwxrwxrwx 1 root root 16 Jun 29 19:53 ~/docker/bundles/1.0.1-dev↩
/binary/docker -> docker-1.0.1-dev

You can then use this binary for live testing by running it instead of the local
Docker daemon. To do so, we need to stop Docker and run this new binary instead.

Version: v1.2.0 (fba92ef) 297



Chapter 9: Getting help and extending Docker

Listing 9.8: Using the development daemon
$ sudo service docker stop
$ ~/docker/bundles/1.0.1-dev/binary/docker -d

This will run the development Docker daemon interactively. You can also back-
ground the daemon if you wish.
We can then test this binary by running it against this daemon.

Listing 9.9: Using the development binary
$ ~/docker/bundles/1.0.1-dev/binary/docker version
Client version: 1.0.1-dev
Client API version: 1.12
Go version (client): go1.2.1
Git commit (client): d37c9a4
Server version: 1.0.1-dev
Server API version: 1.12
Go version (server): go1.2.1
Git commit (server): d37c9a

You can see that we're running a 1.0.1-dev client, this binary, against the 1.0.1↩
-dev daemon we just started. You can use this combination to test and ensure any
changes you've made to the Docker source are working correctly.

Running the tests
It's also important to ensure that all of the Docker tests pass before contributing
code back upstream. To execute all the tests, you need to run this command:

Listing 9.10: Running the Docker tests
$ sudo make test

This command will again upload the current source as build context to an image
and then create a development image. A container will be launched from this

Version: v1.2.0 (fba92ef) 298



Chapter 9: Getting help and extending Docker

image, and the test will run inside it. Again, this may take some time for the
initial build.
If the tests are successful, then the end of the output should look something like
this:

Listing 9.11: Docker test output
. . .
[PASSED]: save - save a repo using stdout
[PASSED]: load - load a repo using stdout
[PASSED]: save - save a repo using -o
[PASSED]: load - load a repo using -i
[PASSED]: tag - busybox -> testfoobarbaz
[PASSED]: tag - busybox's image ID -> testfoobarbaz
[PASSED]: tag - busybox fooo/bar
[PASSED]: tag - busybox fooaa/test
[PASSED]: top - sleep process should be listed in non privileged ↩
mode

[PASSED]: top - sleep process should be listed in privileged mode
[PASSED]: version - verify that it works and that the output is ↩
properly formatted

PASS
PASS github.com/docker/docker/integration-cli 178.685s

TIP You can use the $TESTFLAGS environment variable to pass in arguments to
the test run.

Use Docker inside our development environment
You can also launch an interactive session inside the newly built development
container:

Version: v1.2.0 (fba92ef) 299



Chapter 9: Getting help and extending Docker

Listing 9.12: Launching an interactive session
$ sudo make shell

To exit the container, type exit or Ctrl-D.

Submitting a pull request
If you're happy with your documentation update, bug fix, or new feature, you
can submit a pull request for it on GitHub. To do so, you should fork the Docker
repository and make changes on your fork in a feature branch:

• If it is a bug fix branch, name it XXXX-something, where XXXX is the number
of the issue.

• If it is a feature branch, create a feature issue to announce your intentions,
and name it XXXX-something, where XXXX is the number of the issue.

You should always submit unit tests for your changes. Take a look at the existing
tests for inspiration. You should also always run the full test suite on your branch
before submitting a pull request.
Any pull request with a feature in it should include updates to the documentation.
You should use the process above to test your documentation changes before you
submit your pull request. There are also specific guidelines (as we mentioned
above) for documentation that you should follow.
We have some other simple rules that will help get your pull request reviewed and
merged quickly:

• Always run gofmt -s -w file.go on each changed file before committing
your changes. This produces consistent, clean code.

• Pull requests descriptions should be as clear as possible and include a refer-
ence to all the issues that they address.

• Pull requests must not contain commits from other users or branches.

Version: v1.2.0 (fba92ef) 300



Chapter 9: Getting help and extending Docker

• Commit messages must start with a capitalized and short summary (50 char-
acters maximum) written in the imperative, followed by an optional, more
detailed explanatory text that is separated from the summary by an empty
line.

• Squash your commits into logical units of work using git rebase -i and
git push -f. Include documentation changes in the same commit so that a
revert would remove all traces of the feature or fix.

Lastly, the Docker project uses a Developer Certificate of Origin to verify that you
wrote any code you submit or otherwise have the right to pass it on as an open-
source patch. You can read about why we do this here. The certificate is very
easy to apply. All you need to do is add a line to each Git commit message.

Listing 9.13: The Docker DCO
Docker-DCO-1.1-Signed-off-by: Joe Smith <joe.smith@email.com> (↩
github: github_handle)

NOTE You must use your real name. We do not allow pseudonyms or anony-
mous contributions for legal reasons.

There are several small exceptions to the signing requirement. Currently these
are:

• Your patch fixes spelling or grammar errors.
• Your patch is a single-line change to documentation contained in the docs
directory.

• Your patch fixes Markdown formatting or syntax errors in the documentation
contained in the docs directory.

It's also pretty easy to automate the signing of your Git commits using Git hooks.
You can customize your Git commit.template by adding a prepare-commit-msg
hook to your Docker checkout:

Version: v1.2.0 (fba92ef) 301

http://blog.docker.com/2014/01/docker-code-contributions-require-developer-certificate-of-origin/
http://git-scm.com/book/en/Customizing-Git-Git-Hooks


Chapter 9: Getting help and extending Docker

Listing 9.14: Git commit signing
$ cd docker
$ curl -o .git/hooks/prepare-commit-msg \
https://raw.githubusercontent.com/docker/docker/master/contrib/↩
prepare-commit-msg.hook

$ chmod +x .git/hooks/prepare-commit-msg

NOTE The signing script expects to find your GitHub user name in git
config --get github.user. You can set this option with the git config --set
github.user username command.

Merge approval and maintainers
Once you've submitted your pull request, it will be reviewed, and you will po-
tentially receive feedback. Docker uses a maintainer system much like the Linux
kernel. Each component inside Docker is managed by one or more maintainers
who are responsible for ensuring the quality, stability, and direction of that com-
ponent. The maintainers are supplemented by Docker's benevolent dictator and
chief maintainer, Solomon Hykes. He's the only one who can override a main-
tainer, and he has sole responsibility for appointing new maintainers.
Docker maintainers use the shorthand LGTM (or Looks Good To Me) in comments
on the code review to indicate acceptance of a pull request. A change requires
LGTMs from an absolute majority of the maintainers of each component affected
by the changes. If a change affects docs/ and registry/, then it needs an ab-
solute majority from the maintainers of docs/ and an absolute majority of the
maintainers of registry/.

TIP For more details, see the maintainer process documentation.

Version: v1.2.0 (fba92ef) 302

https://github.com/shykes
https://github.com/docker/docker/blob/master/hack/MAINTAINERS.md


Chapter 9: Getting help and extending Docker

Summary
In this chapter, we've learnt about how to get help with Docker and the places
where useful Docker community members and developers hang out. We've also
learned about the best way to log an issue with Docker, including the sort of
information you need to provide to get the best response.
We've also seen how to set up a development environment to work on the Docker
source or documentation and how to build and test inside this environment to
ensure your fix or feature works. Finally, we've learnt about how to create a
properly structured and good-quality pull request with your update.

Version: v1.2.0 (fba92ef) 303



Index
.dockerignore, 81
/etc/hosts, 48, 141, 144, 145
/var/lib/docker, 45, 58, 64, 150, 177
Apache, 170, 175
API, 264

/containers, 271
/containers/create, 272
/images/json, 268
/info, 268
Client libraries, 276
containers, 274
info, 267

API documentation, 264
AUFS, 20
Automated Builds, 105
Back up volumes, 181
Boot2Docker, 18, 29, 32
boot2docker

ip, 35
btrfs, 20
Build content, 99
Build context, 77, 81, 297

.dockerignore, 81
Building images, 76
Bypassing the Dockerfile cache, 84

CentOS, 25
cgroups, 15, 20, 23
Chef, 13, 19
chroot, 6
CI, 13, 147
Consul, 230

configuration, 233
DNS, 230, 233, 256
HTTP API, 230, 234, 256
ports, 233

Consule
web interface, 234

container
linking, 139
logging, 54
names, 51, 139

container ID, 48, 50--53, 56
containers

introduction, 6
Context, 77
Continuous Integration, 13, 117, 147
Copy-on-write, 15
curl, 130
DCO, 301
Debian, 20
Debugging Dockerfiles, 83

304



Index

default storage driver, 20
Developer Certificate of Origin, see also

DCO
Device Mapper, 20, 22, 26
dind, 147, 189
DNS, 144, 200
Docker

API, 264, 280
Client libraries, 276
List images, 268

APT repository, 23
Authentication, 280
binary installation, 38
Bind UDP ports, 89
build context, 297
build environment, 295, 297
Configuration Management, 13
container ID, 48, 50--53, 56
container names, 51
curl installation, 37
daemon, 38, 240
--tls, 286
--tlsverify, 290
-H flag, 39
defaults, 40
DOCKER_HOST, 39, 267, 290
DOCKER_OPTS, 40
icc flag, 141
network configuration, 39
systemd, 40
Unix socket, 39
Upstart, 40

DCO, 301
dind, 189
DNS, 144, 200, 240

environment variables, 141
docker binary, 38
docker group, 38, 265
Docker Hub, 65
Docker-in-Docker, see also dind
docker0, 133
Dockerfile
ADD, 98
CMD, 90, 127, 129
COPY, 99
ENTRYPOINT, 92, 131
ENV, 95, 143, 150
EXPOSE, 79, 89, 143
FROM, 78
MAINTAINER, 78
ONBUILD, 100
RUN, 78, 79
USER, 96
VOLUME, 97, 150
WORKDIR, 94

Documentation, 296
Fedora
installation, 28

Getting help, 293
Hub API, 264
installation, 20, 25
iptables, 135
IRC, 294
kernel versions, 19
launching containers, 45
license, 7
limiting container communication,

141
linking containers, 139
links, 139

Version: v1.2.0 (fba92ef) 305



Index

listing containers, 50
Mailing lists, 293
naming containers, 51, 139
NAT, 135
networking, 133
OS X, 18
installation, 29

packages, 23
privileged mode, 151
Red Hat Enterprise Linux
installation, 25

registry, 47
Registry API, 264
Remote API, 265
remote installation script, 37
required kernel version, 21
Running your own registry, 114
set container hostname, 200
setting the working directory, 94
signals, 211
SSH, 211
tags, 67
testing, 117
TLS, 281
Ubuntu
installation, 20

Ubuntu firewall, 24
ubuntu image, 47
UFW, 24
upgrading, 42
use of sudo, 21
volumes, 123, 177, 181
deleting, 178

Windows, 18
installation, 32

docker
attach, 52, 157
build, 76, 79, 80, 121, 128, 151,

159, 172, 175, 219
--no-cache, 84
context, 77

commit, 74
history, 85, 121
images, 64, 69, 85, 114, 173, 175,

270
info, 24, 29, 45, 267, 279
inspect, 57, 76, 88, 100, 137, 212,

270
kill, 59, 138, 211
signals, 211

links
environmental variables, 142

login, 73
logs, 54, 129, 200, 205
--tail, 55
-f, 54, 129, 209
-t, 55

port, 87, 88, 188
ps, 50, 53, 56, 59, 87, 125, 226, 271
-a, 50, 59
-l, 50
-n, 56
-q, 59

pull, 66, 69, 237
push, 103, 111, 115
restart, 52, 138
rm, 59, 113, 157, 178
rmi, 111, 113
run, 45, 53, 61, 68, 71, 79, 83, 86,

90, 91, 115, 123, 128, 160, 176,

Version: v1.2.0 (fba92ef) 306



Index

222, 274
--cidfile, 157
--dns, 144
--dns-search, 144
--entrypoint, 94
--hostname, 142, 200
--link, 140, 202, 205
--name, 51, 188, 202, 205
--privileged, 151
--rm, 181, 201, 203
--volumes-from, 178, 188, 201,
203

-P, 89
-d, 53
-e, 96
-h, 142, 200
-p, 140
-u, 96
-v, 140, 177, 181
-w, 95
set environment variables, 96

search, 70
start, 51, 179, 228
stop, 56, 59
tag, 115
top, 55, 129
version, 279
wait, 157

Docker API, 9
docker group, 38, 265
Docker Hub, 65, 70, 103, 105, 264

Logging in, 73
Private repositories, 103

Docker Inc, 7, 68, 293
docker run

-h, 236
Docker user interfaces

DockerUI, 42
Shipyard, 42

Docker-in-Docker, see also dind, 147,
189

docker0, 133
DOCKER_HOST, 39, 267, 290
DOCKER_HOST, 35, 225
DOCKER_OPTS, 240
Dockerfile, 76, 101, 105, 116, 118, 122,

127, 131, 143, 148, 155, 156,
160, 171, 172, 174, 175, 183,
186, 193, 196, 198, 199, 206,
297

ADD, 119, 194, 207
CMD, 175, 184
ENTRYPOINT, 172, 175, 184, 187,

196, 198, 199, 234, 253
ENV, 175
exec format, 79
EXPOSE, 175, 187
template, 84
VOLUME, 172, 174, 184, 197, 234
WORKDIR, 172, 184, 185

DockerUI, 42
Documentation, 296
dotCloud, 7
Drone, 168
EPEL, 27
exec format, 79
Fedora, 25
Fig, 215

Boot2Docker, 216

Version: v1.2.0 (fba92ef) 307



Index

Installation, 215
services, 215

fig
--version, 216
kill, 228
logs, 227
ps, 226
rm, 228
start, 228
stop, 227
up, 223

Getting help, 293
GitHub, 105
gofmt, 300
Golden image, 14
Image management, 14
iptables, 135
IRC, 294
jail, 6
Jekyll, 170, 173
Jenkins CI, 13, 117, 147

automated builds, 160
parameterized builds, 160
post commit hook, 160

JSON, 130
kernel, 19, 21
libcontainer, 15
license, 7
Links, 139
logging, 54

timestamps, 55
lxc, 7, 15

Mailing lists, 293
Microservices, 9
names, 51
namespaces, 20, 23
NAT, 135
Nginx, 118
nsenter, 211
openssl, 281
OpenVZ, 7
Orchestration, 215
PAAS, 7, 13
Platform-as-a-Service, 13
Port mapping, 79
Private repositories, 103
Puppet, 13, 19
Red Hat Enterprise Linux, 25
Redis, 131, 132
Registry

private, 114
Registry API, 264
Remote API, 265
REST, 265
RFC1918, 133
Service Oriented Architecture, 9
Shipyard, 42
Signals, 211
Sinatra, 130
SOA, 9
Solaris Zones, 7
SSH, 211
SSL, 280
sudo, 21

Version: v1.2.0 (fba92ef) 308



Index

Supervisor, 92
tags, 67
Testing applications, 117
Testing workflow, 117
TLS, 264, 280
Trusted builds, 105
Ubuntu, 20
Union mount, 62
Upstart, 40
vfs, 20
Volumes, 123, 177

backing up, 181, 210
deleting, 178
logging, 206

Version: v1.2.0 (fba92ef) 309



Thanks! I hope you enjoyed the book.

© Copyright 2014 - James Turnbull <james@lovedthanlost.net>

mailto:james+thedockerbook@lovedthanlost.net

	List of Figures
	List of Listings
	Foreword
	Who is this book for?
	Credits and Acknowledgments
	Technical Reviewers
	Scott Collier
	John Ferlito
	Paul Nasrat

	Technical Illustrator
	Proofreader
	Author
	Conventions in the book
	Code and Examples
	Colophon
	Errata
	Version

	Introduction
	Introducing Docker
	An easy and lightweight way to model reality
	A logical segregation of duties
	Fast, efficient development life cycle
	Encourages service orientated architecture

	Docker components
	Docker client and server
	Docker images
	Registries
	Containers

	What can you use Docker for?
	Docker with configuration management
	Docker's technical components
	What's in the book?
	Docker resources

	Installing Docker
	Requirements
	Installing on Ubuntu
	Checking for prerequisites
	Installing Docker
	Docker and UFW

	Installing on Red Hat and family
	Checking for prerequisites
	Installing Docker
	Starting the Docker daemon on the Red Hat family

	Boot2Docker installation on OS X
	Installing Boot2Docker on OSX
	Setting up Boot2Docker on OSX
	Testing Boot2Docker

	Boot2Docker installation on Windows
	Installing Boot2Docker on Windows
	Setting up Boot2Docker on Windows
	Testing Boot2Docker

	Using Boot2Docker with this book
	Docker installation script
	Binary installation
	The Docker daemon
	Configuring the Docker daemon
	Checking that the Docker daemon is running

	Upgrading Docker
	Docker user interfaces
	Summary

	Getting Started with Docker
	Ensuring Docker is ready
	Building our first container
	Working with our first container
	Container naming
	Starting a stopped container
	Attaching to a container
	Creating daemonized containers
	Seeing what's happening inside our container
	Inspecting the container's processes
	Stopping a daemonized container
	Finding out more about our container
	Deleting a container
	Summary

	Working with Docker images and repositories
	What is a Docker image?
	Listing Docker images
	Pulling images
	Searching for images
	Building our own images
	Creating a Docker Hub account
	Using Docker commit to create images
	Building images with a Dockerfile
	Building the image from our Dockerfile
	What happens if an instruction fails?
	Dockerfiles and the build cache
	Using the build cache for templating
	Viewing our new image
	Launching a container from our new image
	Dockerfile instructions

	Pushing images to the Docker Hub
	Automated Builds

	Deleting an image
	Running your own Docker registry
	Running a registry from a container
	Testing the new registry

	Alternative Indexes
	Quay

	Summary

	Testing with Docker
	Using Docker to test a static website
	An initial Dockerfile
	Building our Nginx image
	Building containers from our Nginx image
	Editing our website

	Using Docker to build and test a web application
	Building our Sinatra application
	Creating our Sinatra container
	Building a Redis image and container
	Connecting to the Redis container
	Our Redis connection
	Linking Docker containers
	Using our container link to communicate

	Using Docker for continuous integration
	Build a Jenkins and Docker server
	Create a new Jenkins job
	Running our Jenkins job
	Next steps with our Jenkins job
	Summary of our Jenkins setup

	Multi-configuration Jenkins
	Create a multi-configuration job
	Testing our multi-configuration job
	Summary of our multi-configuration Jenkins

	Other alternatives
	Drone
	Shippable

	Summary

	Building services with Docker
	Building our first application
	The Jekyll base image
	Building the Jekyll base image
	The Apache image
	Building the Jekyll Apache image
	Launching our Jekyll site
	Updating our Jekyll site
	Backing up our Jekyll volume
	Extending our Jekyll website example

	Building a Java application server with Docker
	A WAR file fetcher
	Fetching a WAR file
	Our Tomcat 7 application server
	Running our WAR file
	Building on top of our Tomcat application server

	A multi-container application stack
	The Node.js image
	The Redis base image
	The Redis primary image
	The Redis replica image
	Creating our Redis back-end cluster
	Creating our Node container
	Capturing our application logs
	Summary of our Node stack

	Managing Docker containers without SSH
	Summary

	Docker Orchestration and Service Discovery
	Fig
	Installing Fig
	Getting our sample application
	The !fig.yml! file
	Running Fig
	Using Fig
	Fig in summary

	Consul, Service Discovery and Docker
	Building a Consul image
	Testing a Consul container locally
	Running a Consul cluster in Docker
	Starting the Consul bootstrap node
	Starting the remaining nodes
	Running a distributed service with Consul in Docker

	Orchestration alternatives and components
	Fleet and etcd
	Kubernetes
	Apache Mesos
	Helios
	Centurion
	Libswarm

	Summary

	Using the Docker API
	The Docker APIs
	First steps with the Remote API
	Testing the Docker Remote API
	Managing images with the API
	Managing containers with the API

	Improving TProv
	Authenticating the Docker Remote API
	Create a Certificate Authority
	Create a server certificate signing request and key
	Configuring the Docker daemon
	Creating a client certificate and key
	Configuring our Docker client for authentication

	Summary

	Getting help and extending Docker
	Getting help
	The Docker user and dev mailing lists
	Docker on IRC
	Docker on GitHub

	Reporting issues for Docker
	Setting up a build environment
	Install Docker
	Install source and build tools
	Check out the source
	Contributing to the documentation
	Build the environment
	Running the tests
	Use Docker inside our development environment
	Submitting a pull request
	Merge approval and maintainers

	Summary

	Index

