
Follow

Kubernetes NodePort vs LoadBalancer vs
Ingress? When should I use what?
Recently, someone asked me what the di�erence between NodePorts,

LoadBalancers, and Ingress were. They are all di�erent ways to get

external tra�c into your cluster, and they all do it in di�erent ways.

Let’s take a look at how each of them work, and when you would use

each.

Note: Everything here applies to Google Kubernetes Engine. If you are

running on another cloud, on prem, with minikube, or something else,

these will be slightly di�erent. I’m also not going into deep technical

details. If you are interested in learning more, the o�cial documentation is

a great resource!

ClusterIP
A ClusterIP service is the default Kubernetes service. It gives you a

service inside your cluster that other apps inside your cluster can

access. There is no external access.

The YAML for a ClusterIP service looks like this:

apiVersion: v1
kind: Service
metadata:
 name: my-internal-service
spec:
 selector:
 app: my-app
 type: ClusterIP
 ports:
 - name: http
 port: 80
 targetPort: 80
 protocol: TCP

If you can’t access a ClusterIP service from the internet, why am I

talking about it? Turns out you can access it using the Kubernetes

proxy!

1.2.1.2.3.

Sandeep Dinesh
Mar 11 · 5 min read

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

1 de 8 24/10/18 15:52

Start the Kubernetes Proxy:

$ kubectl proxy --port=8080

Now, you can navigate through the Kubernetes API to access this

service using this scheme:

http://localhost:8080/api/v1/proxy/namespaces/<NAMESPACE>

/services/<SERVICE-NAME>:<PORT-NAME>/

So to access the service we de�ned above, you could use the following

address:

http://localhost:8080/api/v1/proxy/namespaces/default/services

/my-internal-service:http/

When would you use this?

There are a few scenarios where you would use the Kubernetes proxy to

access your services.

Thanks to Ahmet Alp Balkan for the diagrams

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

2 de 8 24/10/18 15:52

Debugging your services, or connecting to them directly from your

laptop for some reason

Allowing internal tra�c, displaying internal dashboards, etc.

Because this method requires you to run kubectl as an authenticated

user, you should NOT use this to expose your service to the internet or

use it for production services.

NodePort
A NodePort service is the most primitive way to get external tra�c

directly to your service. NodePort, as the name implies, opens a speci�c

port on all the Nodes (the VMs), and any tra�c that is sent to this port

is forwarded to the service.

The YAML for a NodePort service looks like this:

apiVersion: v1

This isn’t the most technically accurate diagram, but I think it illustrates the point of how a

NodePort works

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

3 de 8 24/10/18 15:52

kind: Service
metadata:
 name: my-nodeport-service
spec:
 selector:
 app: my-app
 type: NodePort
 ports:
 - name: http
 port: 80
 targetPort: 80
 nodePort: 30036
 protocol: TCP

Basically, a NodePort service has two di�erence from a normal

“ClusterIP” service. First, the type is “NodePort.” There is also an

additional port called the nodePort that speci�es which port to open on

the nodes. If you don’t specify this port, it will pick a random port. Most

of the time you should let Kubernetes choose the port; as thockin says,

there are many caveats to what ports are available for you to use.

When would you use this?

There are many downsides to this method:

You can only have once service per port

You can only use ports 30000–32767

If your Node/VM IP address change, you need to deal with that

For these reasons, I don’t recommend using this method in production

to directly expose your service. If you are running a service that doesn’t

have to be always available, or you are very cost sensitive, this method

will work for you. A good example of such an application is a demo app

or something temporary.

LoadBalancer
A LoadBalancer service is the standard way to expose a service to the

internet. On GKE, this will spin up a Network Load Balancer that will

give you a single IP address that will forward all tra�c to your service.

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

4 de 8 24/10/18 15:52

When would you use this?

If you want to directly expose a service, this is the default method. All

tra�c on the port you specify will be forwarded to the service. There is

no �ltering, no routing, etc. This means you can send almost any kind

of tra�c to it, like HTTP, TCP, UDP, Websockets, gRPC, or whatever.

The big downside is that each service you expose with a LoadBalancer

will get its own IP address, and you have to pay for a LoadBalancer per

exposed service, which can get expensive!

Ingress
Unlike all the above examples, Ingress is actually NOT a type of service.

Instead, it sits in front of multiple services and act as a “smart router”

or entrypoint into your cluster.

You can do a lot of di�erent things with an Ingress, and there are many

types of Ingress controllers that have di�erent capabilities.

The default GKE ingress controller will spin up a HTTP(S) Load

Balancer for you. This will let you do both path based and subdomain

Thanks to Ahmet Alp Balkan for the diagrams

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

5 de 8 24/10/18 15:52

based routing to backend services. For example, you can send

everything on foo.yourdomain.com to the foo service, and everything

under the yourdomain.com/bar/ path to the bar service.

The YAML for a Ingress object on GKE with a L7 HTTP Load Balancer

might look like this:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: my-ingress
spec:
 backend:
 serviceName: other
 servicePort: 8080
 rules:
 - host: foo.mydomain.com
 http:
 paths:
 - backend:
 serviceName: foo
 servicePort: 8080
 - host: mydomain.com
 http:
 paths:
 - path: /bar/*
 backend:
 serviceName: bar
 servicePort: 8080

When would you use this?

Ingress is probably the most powerful way to expose your services, but

can also be the most complicated. There are many types of Ingress

Thanks to Ahmet Alp Balkan for the diagrams

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

6 de 8 24/10/18 15:52

controllers, from the Google Cloud Load Balancer, Nginx, Contour,

Istio, and more. There are also plugins for Ingress controllers, like the

cert-manager, that can automatically provision SSL certi�cates for your

services.

Ingress is the most useful if you want to expose multiple services under

the same IP address, and these services all use the same L7 protocol

(typically HTTP). You only pay for one load balancer if you are using

the native GCP integration, and because Ingress is “smart” you can get

a lot of features out of the box (like SSL, Auth, Routing, etc)

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

7 de 8 24/10/18 15:52

Kubernetes NodePort vs LoadBalancer vs Ingress... https://medium.com/google-cloud/kubernetes-nod...

8 de 8 24/10/18 15:52

