Actividad 8 Kubernetes (v. 2111028) Pablo González Nalda del Pais Vasco Universidad De VITORIA-GASTEIZ

GASTEIZKO INGENIARITZA

 (\mathbf{i})

© creative

Depto. de Lenguajes y Sistemas Informáticos lsi.vc.ehu.eus/pablogn

Kubernetes

En esta práctica daremos los primeros pasos en *Kubernetes* (K8S, siendo el 8 las letras que se omiten) y observaremos sus principales características.

8.1. Instalación de minikube, (K8S mono-nodo)

minikube es una instalación flexible de **K8S** de un único nodo. Para ello tenemos que instalar kubectl por separado por uno de los dos posibles caminos, por wget o por apt

Por wget sin usar privilegios de root:

```
1 # https://www.gitbook.com/book/ramitsurana/awesome-kubernetes/details
# https://kubernetes.io/docs/tasks/tools/install-kubectl/
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.
googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl
4 chmod +x kubectl
alias kubectl='./kubectl'
```

Por apt con usar privilegios de root a través de sudo:

```
1 curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo bash -c "echo >/etc/apt/sources.list.d/kubernetes.list \
    'deb http://apt.kubernetes.io/ kubernetes-xenial main'"
4 sudo apt-get update
sudo apt-get install -y kubelet kubeadm kubernetes-cni
```

Y ahora instalamos y arrancamos minikube:

```
1 # https://github.com/kubernetes/minikube
  curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
  chmod +x minikube
4 alias minikube='./minikube'
                                      # alternativa 1 crear un alias
  export PATH=$ (pwd) : $PATH
                                      # alternativa 2 incorporar el dir actual al PATH
  sudo cp minikube /usr/local/bin/
                                      # alternativa 3 ponerlo en un PATH del sistema
  source <(kubectl completion bash)</pre>
7
  # https://www.linux.com/learn/getting-started-kubernetes-easy-minikube
10 # https://minikube.sigs.k8s.io/docs/drivers/
  minikube start --memory=4096 --cpus=4
                                           # con KVM
  minikube start --driver=docker
                                           # con Docker
13 minikube status
```

Accedemos en local al entorno web de gestión de minikube:

minikube dashboard --url
2 minikube dashboard #

Se puede usar minikube como se hace con Vagrant, y realizar las operaciones de conectar, parar y terminar el K8S creado con minikube.

1	minikube	ssh
	minikube	stop
	minikube	delete

8.2. Instalación de Kubernetes con kubeadm init

Para la instalación hay muchas variantes. Se puede hacer de muchas formas, algunas serían las siguientes (ver esta web):

• En Windows se puede activar el soporte a K8S en las opciones de Docker:

https://enmilocalfunciona.io/instalando-y-probando-kubernetes-windows-10/

• En GNU/Linux:

Primero instalamos Docker, en el nodo maestro y en los esclavos:

```
sudo apt install docker.io
sudo groupadd docker
3 sudo usermod -aG docker $USER
```

La forma estándar es usar kubeadm init y kubeadm join (ver¹)

Gracias a la documentación del trabajo de un alumno de matrícula de honor, hay muchos pasos que se me han facilitado.

Tenemos que eliminar el *swap* tanto en el *máster* como en los *workers* (llamados as1 el máster y as2 el *worker*):

```
sudo su
swapon -s # miramos si hay sistema de paginación en disco
swapoff -a
vi /etc/fstab # y comentamos con # la línea de swap
```

Si es en Ubuntu hay que cambiar el cgroup de docker modificando la línea de arranque (que contiene la palabra ExecStart) y reiniciando²

Instalamos como en el caso de minikube:

```
1 sudo su
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
bash -c "echo >/etc/apt/sources.list.d/kubernetes.list \
4 'deb http://apt.kubernetes.io/ kubernetes-xenial main'"
apt-get update
apt-get install -y kubelet kubeadm kubernetes-cni
```

Limpiamos si ha habido arranques fallidos o ejecuciones anteriores:

```
3 rm -rf /var/lib/etcd
```

¹https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/ y
https://devopscube.com/setup-kubernetes-cluster-kubeadm/

²https://stackoverflow.com/questions/69085180/how-to-install-kubernetes-cluster-on-azure-ubuntu-virtual-machine-20-04-lts/ 69128645#69128645.

Arrancamos el máster, y guardamos los token que nos da para unir los workers:

En el máster desplegamos Weave, una red para los contenedores del clúster:

```
1 kubect1 apply -f \
    "https://cloud.weave.works/k8s/net?k8s-version=$(kubect1 version| base64 | tr -d '\n')"
```

Y en el segundo nodo, el worker con los token que nos ha dado en el arranque del maestro:

```
1 sudo su
kubeadm join 10.10.10.101:6443 --token h5rxct.v6krsdnzbb04a447 \
        --discovery-token-ca-cert-hash \
4 sha256:c23c5ee438e7ddf6bf5fcff5ca6817700e5b9ef63db0927eff8252a4a8f001a9
```

Y podemos ver los nodos en el máster con kubectl get nodes

Si hacemos kubectl label node as2 node-role.kubernetes.io/worker=worker haremos que el nodo esclavo, perdón, *worker*, pase a estado worker.

Si accedemos por otra línea de comandos deberemos, para controlar el clúster, hacer de nuevo desde root la línea export KUBECONFIG=/etc/kubernetes/admin.conf

8.3. Acceso al Dashboard desde el exterior de localhost

En las webs siguientes se explica cómo hacer visible el Panel desde fuera.

https://www.thegeekdiary.com/how-to-access-kubernetes-dashboard-externally/ https://adamtheautomator.com/kubernetes-dashboard/

Primero desplegamos el Panel o Dashboard:

```
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.4.0/aio/deploy/
recommended.yaml
2 kubectl proxy
```

Y podemos acceder desde local con el siguiente enlace Panel en *localhost* o en la línea de comandos con:

```
1 curl \
    'http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/
    proxy/'
    curl localhost:8001/version
```

En la segunda línea cambiamos abajo con vi el tipo ClusterIP a NodePort:

```
kubectl get all -n kubernetes-dashboard
kubectl edit service/kubernetes-dashboard -n kubernetes-dashboard
kubectl -n kubernetes-dashboard get services
kubectl get pods --all-namespaces
```

Borramos el pod que nos aparece con un nombre similar a éste:

```
1 kubectl delete pod kubernetes-dashboard-78c79f97b4-gjr21 -n kubernetes-dashboard
kubectl get svc --all-namespaces # vemos el nuevo NodePort y su puerto 31491
lsof -i tcp:31491 # comprobamos que escucha
4 kubectl create serviceaccount dashboard -n kubernetes-dashboard
7 curl -k https://10.10.10.141:31491
kubectl version --output=json
```

Creamos el *token* y lo guardamos:

```
1 vi dashboard-adminuser.yaml
kubectl apply -f dashboard-adminuser.yaml
kubectl -n kubernetes-dashboard create token admin-user
vi token.txt
history > historiaK8S.txt
```

dashboard-adminuser.yaml

```
1 apiVersion: v1
  kind: ServiceAccount
  metadata:
4
    name: admin-user
    namespace: kubernetes-dashboard
7
  ___
  apiVersion: rbac.authorization.k8s.io/v1
10 kind: ClusterRoleBinding
  metadata:
   name: admin-user
13 roleRef:
    apiGroup: rbac.authorization.k8s.io
    kind: ClusterRole
16
   name: cluster-admin
  subjects:
  - kind: ServiceAccount
19
   name: admin-user
    namespace: kubernetes-dashboard
```

En apache deberemos configurar para no tener problemas con https (con SSL):

```
<VirtualHost *:443>
1
    ProxyPreserveHost On
    ServerName k8s.ehu.eus
4
    SSLProxyEngine on
    SSLProxyVerify none
    SSLProxyCheckPeerCN off
7
    SSLProxyCheckPeerName off
    SSLProxyCheckPeerExpire off
10
                             "/"
                                  https://10.10.10.101:32414/
    ProxyPass
                             "/"
    ProxyPassReverse
                                 https://k8s.ehu.eus/
13
    ServerAdmin pablo.gonzalez@ehu.eus
  </VirtualHost>
```

Con lo que ya podemos entrar (si tuviéramos el DNS apuntando con ese subdominio) a https://k8s.ehu.eus/ e introducir el *token* como contraseña.

En minikube, sin terminar de comprobar:

```
kubectl -n kubernetes-dashboard edit service kubernetes-dashboard
kubectl -n kubernetes-dashboard get services
3 lsof -i tcp:32414
kubectl -n kubernetes-dashboard describe $(kubectl -n kubernetes-dashboard get secret -n kubernetes-
dashboard -o name | \grep dashboard-token) |\grep token:
```

4

Historia de instrucciones:

```
sudo apt install docker.io
2 sudo groupadd docker
  sudo usermod -aG docker $USER
  sudo su
5 curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
  bash -c "echo >/etc/apt/sources.list.d/kubernetes.list \
  'deb http://apt.kubernetes.io/ kubernetes-xenial main'"
8 apt update
  apt-get install -y kubelet kubeadm kubernetes-cni
  NODENAME=$ (hostname -s)
11 IPADDR="10.10.10.141"
  kubeadm init --apiserver-advertise-address=$IPADDR --apiserver-cert-extra-sans=$IPADDR --pod-network
      -cidr=192.168.0.0/16 --node-name $NODENAME
  export KUBECONFIG=/etc/kubernetes/admin.conf
14 kubectl apply -f https://github.com/weaveworks/weave/releases/download/v2.8.1/weave-daemonset-k8s.
      yaml
  kubectl label node k2 node-role.kubernetes.io/worker=worker
  kubectl get nodes
17
 kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.6.1/aio/deploy/
      recommended.yaml
  kubectl proxy &
  curl 'http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-
      dashboard:/proxy/
20 curl localhost:8001/version
  kubectl edit service/kubernetes-dashboard -n kubernetes-dashboard
  kubectl get all -n kubernetes-dashboard
23 kubectl delete pod kubernetes-dashboard-6db586b496-z6ftb -n kubernetes-dashboard
  kubectl create serviceaccount dashboard -n kubernetes-dashboard
  kubectl -n kubernetes-dashboard get services
26 kubectl get pods --all-namespaces
  kubectl get pods -n kubernetes-dashboard
  lsof -i tcp:31491
29 kubectl get svc --all-namespaces
  curl -k https://10.10.10.141:31491
32 # En default-ssl.conf
  # ProxyPass "/" https://10.10.10.141:31491/
  # ProxyPassReverse "/" https://lgux61-lsi.ehu.eus/
35
  kubectl version --output=json
  vi dashboard-adminuser.yaml
38 kubectl apply -f dashboard-adminuser.yaml
  kubectl -n kubernetes-dashboard create token admin-user
  history > historiaK8S.txt
```

dashboard-adminuser.yaml

```
apiVersion: v1
2
  kind: ServiceAccount
  metadata:
    name: admin-user
5
    namespace: kubernetes-dashboard
8
  apiVersion: rbac.authorization.k8s.io/v1
  kind: ClusterRoleBinding
11 metadata:
    name: admin-user
  roleRef:
14
    apiGroup: rbac.authorization.k8s.io
    kind: ClusterRole
    name: cluster-admin
17 subjects:
  - kind: ServiceAccount
    name: admin-user
20
    namespace: kubernetes-dashboard
```

8.4. Instalando Træfik con Helm

```
1 export KUBECONFIG=/etc/kubernetes/admin.conf # para poder usar en una sesión nueva
  kubectl -n kubernetes-dashboard create token admin-user # para usar el dashboard o panel hay que
      renovar el token
  systemd-resolve --set-dns=10.20.13.6 --interface=ens18 # cambiar el DNS porque da problemas
4 apt update
  curl https://baltocdn.com/helm/signing.asc | sudo apt-key add -
  apt-get install apt-transport-https --yes
7 echo "deb https://baltocdn.com/helm/stable/debian/ all main" | sudo tee /etc/apt/sources.list.d/helm
      -stable-debian.list
  apt update
  apt install helm
10 kubectl create namespace metallb-system
  helm repo add traefik https://helm.traefik.io/traefik
  helm repo update
13 helm install metallb --namespace=metallb-system metallb/metallb
  helm install traefik traefik/traefik --set experimental.kubernetesGateway.enabled=true,dashboard.
      enabled=true, serviceType=LoadBalancer, rbac.enabled=true, dashboard.auth.basic.admin= '
      $apr1$ZywpxeoS$6U80kYPG116s1xBceEsVz0', dashboard.domain=lgux61-lsi.ehu.eus --namespace=kube-
      system
16 helm list -n kube-system
  helm status traefik2 -n kube-system
  helm uninstall traefik2 -n kube-system
19 kubectl get pods -n kube-system | grep '^traefik-' | awk '{print $1}'
  kubectl port-forward -n kube-system "$ (kubectl get pods -n kube-system | grep '^traefik-' | awk '{
      print $1}')" 9000:9000
  bg
22 curl localhost:9000/dashboard/
  helm search repo
  kubectl get crd | grep traefik
25 # https://blog.zachinachshon.com/traefik-ingress/
```

8.5. Manejo básico de Kubernetes

Para comprobar el sistema usamos (en root con ese export si hemos instalado sin minikube):

```
export KUBECONFIG=/etc/kubernetes/admin.conf
kubectl cluster-info
kubectl get nodes
kubectl get pods
kubectl get services
```

Para acceder desde el exterior ya hemos arrancado el *proxy* al desplegar el *dashboard* en la sección 8.3.

Si estamos en local, podemos ahora arrancar un *proxy*, como dice en esta web.

```
1 kubectl proxy --port=8080
```

y el Dashboard o Panel está en http://localhost:8080/api/v1/proxy/namespaces/ kube-system/services/kubernetes-dashboard

De esa forma veremos lo que arranquemos en minikube.

8.6. Cómo se exponen servicios en el exterior

Un resumen de esta web sería:

- ClusterIP: necesita el proxy y no es claro.
- NodePort: cambian los puertos.
- LoadBalancer: cada elemento tiene su propia IP, y hay uno por servicio.
- Ingress: actúa como un proxy inverso. es el más flexible y complejo.

A través de Træfik:

```
export KUBECONFIG=/etc/kubernetes/admin.conf
kubectl apply -f \
    https://raw.githubusercontent.com/traefik/traefik/v1.7/examples/k8s/traefik-deployment.yaml
    netstat -tlpn
kubectl -n kube-system get svc
curl localhost:32454/dashboard/
```

8.7. Servidor web en un pod con minikube

Lo más sencillo es crear un contenedor y un servicio para que lo gestione y sea accesible en una dirección web.

```
kubectl create -f single_container_pod.yaml
kubectl expose pod web-server --type=NodePort
minikube service web-server
minikube service web-server --url
kubectl delete pod web-server
6 kubectl delete svc web-server
```

8.8. 3 réplicas de nginx con minikube

```
kubectl create -f pod.yaml
kubectl describe pod nginx-deployment
kubectl create -f service.yaml
kubectl describe service nginxservice
minikube service nginxservice --url
```

Se observa la versión del servidor nginx poniendo una página inexistente:

```
http://192.168.99.100:30070/y
http://192.168.99.100:30390/kk
```

8.9. shell dentro de un contenedor de los del pod

```
1 kubectl get pods
kubectl exec nginx-deployment-2743933351-268sd -it sh
kubectl delete pod nginx-deployment-79d686f8f9-r2g77
4 kubectl get deploy
```

Y controlamos qué pods hay, y probamos las operaciones de escalado y despliegue de nueva versión problemática

```
kubectl get pods
kubectl scale deployment.v1.apps/nginx-deployment --replicas=10
kubectl get pods
kubectl scale deployment.v1.apps/nginx-deployment --replicas=2
kubectl get pods
kubectl set image deployment.v1.apps/nginx-deployment nginx=nginx:verskk
kubectl describe deployments
kubectl get rs
kubectl rollout undo deployment.v1.apps/nginx-deployment --to-revision=1
kubectl get pod
kubectl get pod
kubectl get pod
kubectl get deploy
```

8.10. Stateful Sets

A cada contenedor se le asigna un almacenamiento permanente.

Tomado de https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

8.11. Couchbase

Ejemplo de la Base de Datos *Couchbase* de http://blog.kubernetes.io/2016/08/ create-couchbase-cluster-using-kubernetes.html

```
2 kubectl run couchbase --image=arungupta/couchbase
# Maestro
kubectl create -f https://github.com/arun-gupta/couchbase-kubernetes/blob/master/cluster/cluster-
master.yml
kubectl get svc
minikube service couchbase-master-service # usuario ?Administrator? y la password ?password?
# Esclavo / worker
kubectl create -f https://github.com/arun-gupta/couchbase-kubernetes/blob/master/cluster/cluster-
worker.yml
kubectl get rc
kubectl scale rc couchbase-worker-rc --replicas=3
11
# https://forums.couchbase.com/t/how-to-cbbackup-on-kubernetes-docker-issues/10544/2
14
# cbbackup
# https://github.com/couchbase/couchbase-cli
```

8.12. Otros puntos de trabajo

https://kubernetes.io/blog/2019/03/15/kubernetes-setup-using-ansible-and-vagrant/

https://github.com/ecomm-integration-ballerina/kubernetes-cluster/pulls

https://github.com/Samueladewole/kubernetes-cluster

https://medium.com/better-programming/build-your-own-multi-node-kubernetes-cluster-with-monitoring

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

https://kubernetes.io/docs/tutorials/

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/