
Follow

Why we use Terraform and not Chef,
Puppet, Ansible, SaltStack, or
CloudFormation

Update: we took this blog post series, expanded it, and turned it into a

book called Terraform: Up & Running!

This is Part 1 of the Comprehensive Guide to Terraform series. In the

intro to the series, we discussed why every company should be using

infrastructure-as-code (IAC). In this post, we’re going to discuss why

we picked Terraform as our IAC tool of choice.

If you search the Internet for “infrastructure-as-code”, it’s pretty easy to

come up with a list of the most popular tools:

Chef

Puppet

Ansible

•

•

•

•••

••••1.2.•••••

Yevgeniy Brikman
Co-founder of Gruntwork, Author of “Hello, Startup” and “Terraform: Up & Running”
Sep 26, 2016 · 11 min read

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

1 de 11 16/10/18 12:57

SaltStack

CloudFormation

Terraform

What’s not easy is �guring out which one of these you should use. All of

these tools can be used to manage infrastructure as code. All of them

are open source, backed by large communities of contributors, and

work with many di�erent cloud providers (with the notable exception

of CloudFormation, which is closed source and AWS-only). All of them

o�er enterprise support. All of them are well documented, both in

terms of o�cial documentation and community resources such as blog

posts and StackOver�ow questions. So how do you decide?

What makes this even harder is that most of the comparisons you �nd

online between these tools do little more than list the general

properties of each tool and make it sound like you could be equally

successful with any of them. And while that’s technically true, it’s not

helpful. It’s a bit like telling a programming newbie that you could be

equally successful building a website with PHP, C, or Assembly—a

statement that’s technically true, but one that omits a huge amount of

information that would be incredibly useful in making a good decision.

In this post, we’re going to dive into some very speci�c reasons for why

we picked Terraform over the other IAC tools. As with all technology

decisions, it’s a question of trade-o�s and priorities, and while your

particular priorities may be di�erent than ours, we hope that sharing

our thought process will help you make your own decision. Here are

the main trade-o�s we considered:

Con�guration Management vs Orchestration

Mutable Infrastructure vs Immutable Infrastructure

Procedural vs Declarative

Client/Server Architecture vs Client-Only Architecture

Con�guration Management vs
Orchestration
Chef, Puppet, Ansible, and SaltStack are all “con�guration

management” tools, which means they are designed to install and

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

2 de 11 16/10/18 12:57

manage software on existing servers. CloudFormation and Terraform

are “orchestration tools”, which means they are designed to provision

the servers themselves, leaving the job of con�guring those servers to

other tools. These two categories are not mutually exclusive, as most

con�guration management tools can do some degree of provisioning

and most orchestration tools can do some degree of con�guration

management. But the focus on con�guration management or

orchestration means that some of the tools are going to be a better �t

for certain types of tasks.

In particular, we’ve found that if you use Docker or Packer, the vast

majority of your con�guration management needs are already taken

care of. With Docker and Packer, you can create images (such as

containers or virtual machine images) that have all the software your

server needs already installed and con�gured (for more info on what

makes Docker great, see here). Once you have such an image, all you

need is a server to run it. And if all you need to do is provision a bunch

of servers, then an orchestration tool like Terraform is typically going to

be a better �t than a con�guration management tool (here’s an

example of how to use Terraform to deploy Docker on AWS).

Mutable Infrastructure vs Immutable
Infrastructure
Con�guration management tools such as Chef, Puppet, Ansible, and

SaltStack typically default to a mutable infrastructure paradigm. For

example, if you tell Chef to install a new version of OpenSSL, it’ll run

the software update on your existing servers and the changes will

happen in-place. Over time, as you apply more and more updates, each

server builds up a unique history of changes. This often leads to a

phenomenon known as con�guration drift, where each server becomes

slightly di�erent than all the others, leading to subtle con�guration

bugs that are di�cult to diagnose and nearly impossible to reproduce.

If you’re using an orchestration tool such as Terraform to deploy

machine images created by Docker or Packer, then every “change” is

actually a deployment of a new server (just like every “change” to a

variable in functional programming actually returns a new variable).

For example, to deploy a new version of OpenSSL, you would create a

new image using Packer or Docker with the new version of OpenSSL

already installed, deploy that image across a set of totally new servers,

and then undeploy the old servers. This approach reduces the

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

3 de 11 16/10/18 12:57

likelihood of con�guration drift bugs, makes it easier to know exactly

what software is running on a server, and allows you to trivially deploy

any previous version of the software at any time. Of course, it’s possible

to force con�guration management tools to do immutable deployments

too, but it’s not the idiomatic approach for those tools, whereas it’s a

natural way to use orchestration tools.

Procedural vs Declarative
Chef and Ansible encourage a procedural style where you write code

that speci�es, step-by-step, how to to achieve some desired end state.

Terraform, CloudFormation, SaltStack, and Puppet all encourage a

more declarative style where you write code that speci�es your desired

end state, and the IAC tool itself is responsible for �guring out how to

achieve that state.

For example, let’s say you wanted to deploy 10 servers (“EC2 Instances”

in AWS lingo) to run v1 of an app. Here is a simpli�ed example of an

Ansible template that does this with a procedural approach:

- ec2:
 count: 10
 image: ami-v1
 instance_type: t2.micro

And here is a simpli�ed example of a Terraform template that does the

same thing using a declarative approach:

resource "aws_instance" "example" {
 count = 10
 ami = "ami-v1"
 instance_type = "t2.micro"
}

Now at the surface, these two approaches may look similar, and when

you initially execute them with Ansible or Terraform, they will produce

similar results. The interesting thing is what happens when you want to

make a change.

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

4 de 11 16/10/18 12:57

For example, imagine tra�c has gone up and you want to increase the

number of servers to 15. With Ansible, the procedural code you wrote

earlier is no longer useful; if you just updated the number of servers to

15 and reran that code, it would deploy 15 new servers, giving you 25

total! So instead, you have to be aware of what is already deployed and

write a totally new procedural script to add the 5 new servers:

- ec2:
 count: 5
 image: ami-v1
 instance_type: t2.micro

With declarative code, since all you do is declare the end state you

want, and Terraform �gures out how to get to that end state, Terraform

will also be aware of any state it created in the past. Therefore, to

deploy 5 more servers, all you have to do is go back to the same

Terraform template and update the count from 10 to 15:

resource "aws_instance" "example" {
 count = 15
 ami = "ami-v1"
 instance_type = "t2.micro"
}

If you executed this template, Terraform would realize it had already

created 10 servers and therefore that all it needed to do was create 5

new servers. In fact, before running this template, you can use

Terraform’s “plan” command to preview what changes it would make:

> terraform plan

+ aws_instance.example.11
 ami: "ami-v1"
 instance_type: "t2.micro"

+ aws_instance.example.12
 ami: "ami-v1"
 instance_type: "t2.micro"

+ aws_instance.example.13

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

5 de 11 16/10/18 12:57

 ami: "ami-v1"
 instance_type: "t2.micro"

+ aws_instance.example.14
 ami: "ami-v1"
 instance_type: "t2.micro"

+ aws_instance.example.15
 ami: "ami-v1"
 instance_type: "t2.micro"

Plan: 5 to add, 0 to change, 0 to destroy.

Now what happens when you want to deploy v2 the service? With the

procedural approach, both of your previous Ansible templates are again

not useful, so you have to write yet another template to track down the

10 servers you deployed previous (or was it 15 now?) and carefully

update each one to the new version. With the declarative approach of

Terraform, you go back to the exact same template once again and

simply change the ami version number to v2:

resource "aws_instance" "example" {
 count = 15
 ami = "ami-v2"
 instance_type = "t2.micro"
}

Obviously, the above examples are simpli�ed. Ansible does allow you to

use tags to search for existing EC2 instances before deploying new ones

(e.g. using the instance_tags and count_tag parameters), but having to

manually �gure out this sort of logic for every single resource you

manage with Ansible, based on each resource’s past history, can be

surprisingly complicated (e.g. �nding existing instances not only by

tag, but also image version, availability zone, etc). This highlights two

major problems with procedural IAC tools:

When dealing with procedural code, the state of the infrastructure

is not fully captured in the code. Reading through the three

Ansible templates we created above is not enough to know what’s

deployed. You’d also have to know the order in which we applied

those templates. Had we applied them in a di�erent order, we

might end up with di�erent infrastructure, and that’s not

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

6 de 11 16/10/18 12:57

something you can see in the code base itself. In other words, to

reason about an Ansible or Chef codebase, you have to know the

full history of every change that has ever happened.

The reusability of procedural code is inherently limited because

you have to manually to take into account the current state of the

codebase. Since that state is constantly changing, code you used a

week ago may no longer be usable because it was designed to

modify a state of your infrastructure that no longer exists. As a

result, procedural code bases tend to grow large and complicated

over time.

On the other hand, with the kind of declarative approach used in

Terraform, the code always represents the latest state of your

infrastructure. At a glance, you can tell what’s currently deployed and

how it’s con�gured, without having to worry about history or timing.

This also makes it easy to create reusable code, as you don’t have to

manually account for the current state of the world. Instead, you just

focus on describing your desired state, and Terraform �gures out how

to get from one state to the other automatically. As a result, Terraform

codebases tend to stay small and easy to understand.

Of course, there are downsides to declarative languages too. Without

access to a full programming language, your expressive power is

limited. For example, some types of infrastructure changes, such as a

rolling, zero-downtime deployment, are hard to express in purely

declarative terms. Similarly, without the ability to do “logic” (e.g. if-

statements, loops), creating generic, reusable code can be tricky

(especially in CloudFormation). Fortunately, Terraform provides a

number of powerful primitives—such as input variables, output

variables, modules, create_before_destroy, count, and interpolation

functions—that make it possible to create clean, con�gurable, modular

code even in a declarative language. We’ll discuss these tools more in

Part 4, How to create reusable infrastructure with Terraform modules

and Part 5, Terraform tips & tricks: loops, if-statements, and pitfalls.

Client/Server Architecture vs Client-Only
Architecture
Chef, Puppet, and SaltStack all use a client/server architecture by

default. The client, which could be a web UI or a CLI tool, is what you

use to issue commands (e.g “deploy X”). Those commands go to a

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

7 de 11 16/10/18 12:57

server, which is responsible for executing your commands and storing

the state of the system. To execute those commands, the server talks to

agents, which must be running on every server you want to con�gure.

This has a number of downsides:

You have to install and run extra software on every one of your

servers.

You have to deploy an extra server (or even a cluster of servers for

high availability) just for con�guration management.

You not only have to install this extra software and hardware, but

you also have to maintain it, upgrade it, make backups of it,

monitor it, and restore it in case of outages.

Since the client, server, and agents all need to communicate over

the network, you have to open extra ports for them, and con�gure

ways for them to authenticate to each other, all of which increases

your surface area to attackers.

All of these extra moving parts introduce a large number of new

failure modes into your infrastructure. When you get a bug report

at 3AM, you’ll have to �gure out if it’s a bug in your application

code, or your IAC code, or the con�guration management client

software, or the con�guration management agent software, or the

con�guration management server software, or the ports all those

con�guration management pieces use to communicate, or the way

they authenticate to each other, or…

CloudFormation, Ansible, and Terraform, use a client-only

architecture. Actually, CloudFormation is also client/server, but AWS

handles all the server details so transparently, that as an end user, you

only have to think about the client code. The Ansible client works by

connecting directly to your servers over SSH. Terraform uses cloud

provider APIs to provision infrastructure, so there are no new

authentication mechanisms beyond what you’re using with the cloud

provider already, and there is no need for direct access to your servers.

We found this as the best option in terms of ease-of-use, security, and

maintainability.

Conclusion
Putting it all together, below is a table that shows how the most popular

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

8 de 11 16/10/18 12:57

IAC tools stack up:

At Gruntwork, what we wanted was an open source, cloud-agnostic

orchestration tool that supported immutable infrastructure, a

declarative language, and a client-only architecture. From the table

above, Terraform is the only tool that meets all of our criteria.

Of course, Terraform isn’t perfect. It’s younger and less mature than all

the other tools on the list: whereas Puppet came out in 2005, Chef in

2009, SaltStack and CloudFormation in 2011, and Ansible in 2012,

Terraform came out just 2 years ago, in 2014. Terraform is still pre

1.0.0 (latest version is 0.7.4), so there is no guarantee of a stable or

backwards compatible API. Bugs are relatively common (e.g. there are

over 800 open issues with the label “bug”), although the vast majority

are harmless eventual consistency issues that go away when you rerun

Terraform. There are also some issues with how Terraform stores state,

although there are e�ective solutions for those issues that we will

discuss in Part 3: How to manage Terraform state.

Despite its drawbacks, we �nd that Terraform’s strengths far outshine

its weaknesses, and that no other IAC tool �ts our criteria nearly as

well. If Terraform sounds like something that may �t your criteria too,

head over to Part 2: An Introduction to Terraform, to learn more.

For an expanded version of this blog post series, pick up a copy of the book

Terraform: Up & Running. If you need help with Terraform, DevOps

A comparison of popular infrastructure-as-code tools. Click on the image for a larger version. Note that this table shows the “idiomatic” way

to use each tool.

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

9 de 11 16/10/18 12:57

practices, or AWS at your company, feel free to reach out to us at

Gruntwork. And if you’d like to stay up-to-date with the latest news on

DevOps, AWS, software infrastructure, and Gruntwork itself, subscribe to

the Gruntwork Newsletter.

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

10 de 11 16/10/18 12:57

Why we use Terraform and not Chef, Puppet, Ansib... https://blog.gruntwork.io/why-we-use-terraform-a...

11 de 11 16/10/18 12:57

