
Follow

Load Balancing Applications with HAProxy
and Docker
A tutorial for a real world docker use case.

Recently I read a lot of articles about load balancing applications with

Docker, Docker Compose, and Docker Swarm for my work. We have a

couple of hundreds of instances and we need to manage them and do

load balancing between them.

There are a lot of articles about this topic, but sadly the use case they

present is quit simple and because of that they really don’t help. Here

is a couple of examples to what I mean:

Manually create hundreds of containers is not practical.

Create hundred of containers each one on a di�erent port is not

practical.

Write the containers ip and port manually in nginx conf �le is

not practical.

For that reason I decided to write this post and present the way we

use. It’s not by any mean the “right” way or the only way, but it’s the

way that works for us right now. Also, I’m assuming you know

Docker, Docker Compose, and Docker Swarm.

1.

2.

3.

Nir Galon
Jul 11, 2017 · 6 min read

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

1 de 9 9/10/18 15:31

Our simple application
Let’s start by creating our simple Node.js application. Create a �le

named index.js with the following code:

var http = require('http');
var os = require('os');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(`<h1>I'm ${os.hostname()}</h1>`);
}).listen(8080);

Now we need to dockerize the app, so we’ll create a �le named

Dockerfile with the following code:

FROM node
RUN mkdir -p /usr/src/app
COPY index.js /usr/src/app
EXPOSE 8080
CMD ["node", "/usr/src/app/index"]

To build a docker image of our newly awesome Node.js app from this

docker �le instructions we’ll write docker build -t awesome . in the

Let’s start! (:

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

2 de 9 9/10/18 15:31

command line, where our Dockerfile �le is located.

Now we have a docker image of our simple (and awesome) Node.js

app, and we can create containers from that image. Let’s say we need

20 containers of that app, so we need an automated way to create

those containers and manage them. Also we need a container with

some HTTP server to route and load balance the requests to our

Node.js containers.

. . .

Enter Docker Compose
For our HTTP server we’ll use HAProxy, that means we need to create

a container with HAProxy that will listen to port 80 and load balance

the requests to the di�erent Node.js containers on port 8080. To

create our containers (Node.js apps and HAProxy) we’ll use Docker

Compose, let’s write our docker-compose.yml �le:

version: '3'

services:
awesome:

 image: awesome
 ports:
 - 8080
 environment:
 - SERVICE_PORTS=8080
 deploy:
 replicas: 20
 update_config:
 parallelism: 5
 delay: 10s
 restart_policy:
 condition: on-failure
 max_attempts: 3
 window: 120s
 networks:
 - web

 proxy:
 image: dockercloud/haproxy
 depends_on:
 - awesome
 environment:
 - BALANCE=leastconn
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 ports:

1.2.3.

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

3 de 9 9/10/18 15:31

 - 80:80
 networks:
 - web
 deploy:
 placement:
 constraints: [node.role == manager]

networks:
 web:
 driver: overlay

Let’s explain what the hell is happening here. We create 2 services:

The �rst service is our Node.js app (that call awesome). It builds

that service from an image that call awesome (that we previously

built). We expose port 8080, and add an environment variable

named SERVICE_PORTS with the port we exposed (we do it for

the HAProxy, I’ll explain why later on). We also create 20

replicas from that image (20 containers) and have some update

and restart settings for them. The important thing to notice is

that we put all those containers in a network called web (we

create the network later, in the end of the �le).

The second service we create is HAProxy from the haproxy

Docker (the compony) uses in their cloud (we don’t build it and

doesn’t create a Dockerfile for it, we just specify from where to

pull the image). It depends_on the awesome service, so it won’t

boot until the awesome service is �nished (i.e. all of the

container are up and running). It’s also shared the docker.sock

�le (volumes �eld). This is the �le the HAProxy container needs

to look at to learn about the containers in it’s network (new and

existing containers). We expose port 80, and put this container

in the web network, In the deploy setting, we just tell it to

always put this container on the manager node (this settings is

related to Docker Swarm, when we have couple of node (i.e.

servers).

The last thing we do is to create the network (named web).

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

4 de 9 9/10/18 15:31

DockerCloud HAProxy
For our HTTP Server we use HAProxy, but not the regular version of

HAProxy, we use the version docker uses in their cloud. That’s why

we set an environment variable named SERVICE_PORTS in our

awesome service, because this is the ports that will be exposed to

HAProxy (we can put multiple ports there by separating them with

comma). We also set an environment variable named BALANCE to set

the load balancing algorithm to be leastconn and not roundrobin

(which is what set in default).

Docker Swarm
Now let’s create a swarm (with one computer for now, but you can

easily add more to the swarm). To do this we'll write docker swarm

init and we created a swarm!! It’s also added our computer to the

swarm, and because our computer is the �rst it’s also the manager of

the swarm.

The network, the services, and all the containers called stack . To

create our stack we need to use docker stack command, but we

want to point the stack to our docker-compose.yml �le, so it’ll build

the stuck according to our plan there. We can do it by writing docker

stack deploy --compose-file=docker-compose.yml prod . we use the

deploy command to deploy a new stack (we’ll also use it to update

an existing stack), we add a �ag to point it to our docker-compose.yml

Our project looks good so far, and we almost at the �nish line!

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

5 de 9 9/10/18 15:31

�le. And �nally we call our stack prod (this is what came up in my

head when I wrote those lines, sorry).

. . .

When we’ll hit http://localhost we’ll get the container id in the

response, and we can see it has a di�erent id every request.

Now let’s look at our services by writing docker service ls and we’ll

see all of our services and replicas

We can also create a second version of our awesome app. Let’s change

the code a little bit (let’s add some exclamation marks at the end):

var http = require('http');
var os = require('os');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(`<h1>I'm ${os.hostname()}!!!</h1>`);
}).listen(8080);

So we need to build the image again, but this time it’s the second

Di�erent container id evert request

All of our docker services

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

6 de 9 9/10/18 15:31

version of the app so we’ll write docker build -t awesome:v2 . and

we’ll create an image called awesome but with a v2 tag. To update

our containers in the awesome service to use the v2 version of our

app (without stop the service) we’ll write docker service update

--image awesome:v2 prod_awesome and our service called awesome , in

prod stack, will update it’s containers �ve by �ve to use the second

version of our app (why 5 containers at a time? because we wrote

parallelism: 5 in our docker-compose.yml �le.

We can see our docker slowly (but surly) kill the old containers and

create new ones with the second version of our app. And when we hit

http://localhost we still get a response, there is no downtime.

Also, if we want to scale the service to more than 20 containers, we

can do it with only one command: docker service scale

prod_awesome=50 and docker will start 30 more containers from the

awesome:v2 image.

. . .

Summery
So, we don’t need to create hundreds of containers manually. We

don’t need to place every container of our app in a di�erent port. We

don’t need to manually write our containers ip and port in

ngninx/haproxy conf �le. And we can do it with multiple servers

(with docker swarm), with multiple services (with docker compose),

update our application without downtime, and scale it up (or down)

without downtime.

Some containers are already use the second version. No Downtime (:

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

7 de 9 9/10/18 15:31

Hope it’s been practical, and I would love to hear how you do it in

your compony!

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

8 de 9 9/10/18 15:31

Load Balancing Applications with HAProxy and... https://medium.com/@nirgn/load-balancing-appl...

9 de 9 9/10/18 15:31

