
TechTinkering
=============

Twitter YouTube Email GitHub RSS

Setting up a Beowulf Cluster Using Open
MPI on Linux
2 December 2009 Lawrence Woodman

#Beowulf Clusters #Distributed Processing #High Performance Computing

#Linux #MPI #Parallel Processing

I have been doing a lot of work recently on Linear Genetic

Programming. This requires a great deal of processing power and

to meet this I have been using Open MPI to create a Linux

cluster. What follows is a quick guide to getting a cluster

running. The basics really are very simple and, depending on the

size, you can get a simple cluster running in less than half an

hour, assuming you already have the machines networked and

running Linux.

What is a Beowulf Cluster?
A Beowulf Cluster is a collection of privately networked

computers which can be used for parallel computations. They

consist of commodity hardware running open source software such

as Linux or a BSD, often coupled with PVM (Parallel Virtual

Machine) or MPI (Message Passing Interface). A standard set up

will consist of one master node which will control a number of

slave nodes. The slave nodes are typically headless and generally

all access the same files from a server. They have been referred

to as Beowulf Clusters since before 1998 when the original

Beowulf HOWTO was released.

What is Open MPI?

Open MPI is one of the leading MPI-2 implementations used by many

of the TOP 500 Supercomputers. It is open source and is developed

and maintained by a consortium of academic, research, and

industry partners. The Open MPI project has the stated aim of

building the best Message Passing Interface (MPI) library

available, which judging by where it is used, I would say they

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

1 de 10 2/12/20 17:06

are well on their way to doing.

The main way that it is used is to start a program from the

master node and specify how many processes you want to use, the

program is then started for each of those process whether this is

on the same machine or over multiple machines. The processes can

communicate using the MPI library and all data sent to STDOUT

from the slave nodes is piped to STDOUT on the master node.

Setting up the Machines

I am making several assumptions in this article:

You have at least two machines connected via a TCP/IP network.

Each machine is using the same processor architecture, to ease

sharing your program executables.

The machines all have Linux installed.

Each machine has a common login user name, such as mpiuser . I

will refer to the common login as mpiuser for the rest of this

article.

Each machine has mpiuser sharing the same home folder, usually

through NFS, or has the relevant parts of the home folder

synchronised, perhaps with rsync .

I will refer to each of the slaves nodes as slave1 , slave2 ,

etc. You, however, can choose whatever host names you like.

One of the machines will be the master node, this is the machine

from which you will control the cluster and run your programs.

The other nodes will be known as slaves.

Installing and Configuring Open MPI on all Nodes
Under Debian Lenny you need to install the following packages:

openmpi-bin

openmpi-common

libopenmpi1

libopenmpi-dev (Not actually needed for a slave node.)

This can be done as root, on Debian, with:

$ apt-get install openmpi-bin openmpi-common libopenmpi1 libopenmpi-dev

The names may vary on your distribution, but the most important

thing to remember is that you should have the same version of

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

2 de 10 2/12/20 17:06

Open MPI on all the machines, for it to work properly.

Under Debian Lenny, the Open MPI executables install into

/usr/bin . If they install into a different location, then you will

need to ensure that this location is in the PATH for mpiuser . You

may also need to ensure that LD_LIBRARY_PATH points to /usr/lib

Slave Nodes

So that the master node can control the slave nodes, each slave

node needs an SSH server installed. Under Debian, install the

following package:

openssh-server

Under Debian, this can be done as root with:

$ apt-get install openssh-server

Master Node

Setting up SSH

Before continuing with setting up Open SSH please refer to their

site. I am providing just enough information here to get the

cluster working and make no guarantees as to how secure this

method is.

To be able to control the slave nodes from the master node you

need an SSH client installed. Under Debian, install the following

package:

openssh-client

Under Debian, this can be done as root with:

$ apt-get install openssh-client

While logged in as mpiuser , create SSH public/private key pairs

with password: h475k2!4553ffe (Choose your own password) using file:

/home/mpiuser/.ssh/id_dsa .

$ ssh-keygen -t dsa

Make sure that each machine knows that this user is authorized to

log into them.

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

3 de 10 2/12/20 17:06

$ cp /home/mpiuser/.ssh/id_dsa.pub /home/mpiuser/.ssh/authorized_keys

If you are not sharing the /home/mpiuser folder then make sure that

each slave node knows that mpiuser on the master node is

authorized to log into them. For slave1 use:

$ scp /home/mpiuser/.ssh/id_dsa.pub mpiuser@slave1:.ssh/authorized_keys

Correct file permissions (This will also need to be done on the

slave nodes if not sharing the home folder):

$ chmod 700 /home/mpiuser/.ssh

$ chmod 600 /home/mpiuser/.ssh/authorized_keys

To test that this has worked try using SSH to connect to your

slaves from the master, using the password you entered when

creating the key pairs above:

$ ssh slave1

Configuring Open MPI

To let Open MPI know which machines to run your programs on, you

can create a file to store this. I will call this file /home/mpiuser

/.mpi_hostfile and it could contain the following:

The Hostfile for Open MPI

The master node, 'slots=2' is used because it is a dual-processor machine.

localhost slots=2

The following slave nodes are single processor machines:

slave1

slave2

slave3

Compiling Programs
OpenMPI can be used with a variety of languages, two of the most

popular are FORTRAN and 'C'. If your programs are written in 'C',

then you can either use `mpicc` instead of your normal 'C'

compiler or you can pass the additional arguments directly to

your 'C' compiler. With `mpicc` the arguments you pass are passed

to your normal 'C' compiler.

If you want to use mpicc to compile a 'C' source file called

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

4 de 10 2/12/20 17:06

testprogram.c :

$ mpicc testprogram.c

If you want to see what will be passed to your 'C' compiler when

compiling and linking:

$ mpicc -showme

Running Your Programs on the Cluster

Ensure That SSH Doesn't Ask For a Password
Because Open MPI will use SSH to connect to each of the machines

and run your program, you need to ensure that the password

doesn't have to be entered for each connection.

Use ssh-agent to remember the password while logged in as mpiuser :

$ eval `ssh-agent`

Tell ssh-agent the password for the SSH key:

$ ssh-add ~/.ssh/id_dsa

Test by logging into one of the slave nodes, while logged in as

mpiuser; this shouldn't ask for a password:

$ ssh slave1

Starting a Program on the Cluster

You can start a program on just one machine, and have it execute

on multiple processors/cores. This is handy if you have a

powerful machine or are debugging/testing a program.

Alternatively, you can run the program over your cluster and

request as many processes as you want to be run over it.

To run myprogram on two processes on the local machine:

$ mpirun -np 2 ./myprogram

To run myprogram over five processes on the cluster using the

.mpi_hostfile created above (Note that myprogram must be in the same

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

5 de 10 2/12/20 17:06

location on each machine):

$ mpirun -np 2 --hostfile .mpi_hostfile ./myprogram

An Example Test Program
The following program will send a random number from the master

node to all the slave nodes.

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

 const int MASTER = 0;

 const int TAG_GENERAL = 1;

 int numTasks;

 int rank;

 int source;

 int dest;

 int rc;

 int count;

 int dataWaitingFlag;

 char inMsg;

 char outMsg;

 MPI_Status Stat;

 // Initialize the MPI stack and pass 'argc' and 'argv' to each slave node

 MPI_Init(&argc,&argv);

 // Gets number of tasks/processes that this program is running on

 MPI_Comm_size(MPI_COMM_WORLD, &numTasks);

 // Gets the rank (process/task number) that this program is running on

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // If the master node

 if (rank == MASTER) {

 // Send out messages to all the sub-processes

 for (dest = 1; dest < numTasks; dest++) {

 outMsg = rand() % 256; // Generate random message to send to slave nodes

 // Send a message to the destination

 rc = MPI_Send(&outMsg, 1, MPI_CHAR, dest, TAG_GENERAL, MPI_COMM_WORLD);

 printf("Task %d: Sent message %d to task %d with tag %d\n",

 rank, outMsg, dest, TAG_GENERAL);

 }

 }

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

6 de 10 2/12/20 17:06

 // Else a slave node

 else {

 // Wait until a message is there to be received

 do {

 MPI_Iprobe(MASTER, 1, MPI_COMM_WORLD, &dataWaitingFlag, MPI_STATUS_IGNORE);

 printf("Waiting\n");

 } while (!dataWaitingFlag);

 // Get the message and put it in 'inMsg'

 rc = MPI_Recv(&inMsg, 1, MPI_CHAR, MASTER, TAG_GENERAL, MPI_COMM_WORLD, &Stat);

 // Get how big the message is and put it in 'count'

 rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

 printf("Task %d: Received %d char(s) (%d) from task %d with tag %d \n",

 rank, count, inMsg, Stat.MPI_SOURCE, Stat.MPI_TAG);

 }

 MPI_Finalize();

}

If you save the above source code to a file called testprogram.c

then compile it using:

$ mpicc testprogram.c

Then run it either over 20 processes on the local machine:

$ mpirun -np 20 ./a.out

Or over 5 processes on the cluster:

$ mpirun -np 5 --hostfile .mpi_hostfile ./a.out

You should see on the master node that the output to STDOUT from

the slave nodes is redirected to STDOUT on the master node. The

master node will output what it is sending and each slave node

will output what it has received or if it is waiting. Once each

node has finished, the master node will exit and return you to

the command prompt.

Where Can I Find More Information?

For Beowulf clusters take a look at beowulf.org and Cluster

Monkey. There is lots of information available for Open MPI at

the Open MPI Project and there is an excellent tutorial for

programming using MPI at Lawrence Livermore National Laboratory.

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

7 de 10 2/12/20 17:06

Setting up a Beowulf Cluster Using Open MPI on Linux by Lawrence

Woodman is licensed under a Creative Commons Attribution 4.0

International License.

Share This Post

Reddit Facebook Twitter Email

Feedback/Discuss

Email

Sign up to get new articles straight to your inbox.

Email address Subscribe

Delivered by FeedBurner

Related Articles

Beware of Immutable Lists for F# Parallel
Processing
19 April 2014

#F# #Parallel Processing #Programming

With F#, the list often feels like the default choice of data

structure. It is immutable and hence easy to reason about,

however its use can come at a great cost. If you are using lists

to process la... Read More

Using C-Kermit to Exchange Files With Telnet
BBS's
9 April 2013

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

8 de 10 2/12/20 17:06

#BBS #Linux #Retro

Most BBSs that are still running now do so via telnet. In many

ways this is great as it allows people from all around the world

to access a BBS as if it were local to them. The problem comes

though, ... Read More

Connecting to a Remote Serial Port over TCP/IP
2 April 2013

#Emulation #Linux #Retro

Most modern machines don't have a serial port as standard; you

could use a USB to serial lead, however, if you have another

machine available that does have a serial port you can access it

remotely ove... Read More

Using Netcat to Create ad hoc Links Between
Applications or Machines
25 March 2013

#Linux

Netcat is a simple Unix utility which reads and writes data

across network connections using the TCP or UDP protocol. It is

often described as the "Swiss-army knife for TCP/IP" because of

it... Read More

Getting Colour ANSI Emulation to Work Properly
When Connecting to a BBS With Telnet Under
Linux
14 February 2010

#ANSI #BBS #Linux #Retro #Text Mode

I have noticed that the number of people interested in using

telnet to access BBSs seems to be growing, which I'm really

pleased to see. However lots of people seem to be having trouble

getting colour... Read More

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

9 de 10 2/12/20 17:06

Legal: T & C, Privacy Policy

Setting up a Beowulf Cluster Using Open MPI on Linux https://techtinkering.com/2009/12/02/setting-up-a-beowulf-c...

10 de 10 2/12/20 17:06

