
9,314,664 members (45,159 online) Sign in

home quick answers discussions

features community help

Articles » Platforms, Frameworks & Libraries » Libraries » General

Article

Browse Code

Stats

Revisions (3)

Alternatives

Comments &
Discussions

About Article

An article written with the
purpose to help any
beginner to use OpenMP.

Type Article

Licence CPOL

First Posted 19 Feb 2010

Views 11,726

Bookmarked 30 times

Vista VS2008 C

Architect Dev , +

Top News

Force.com is the next
Visual Basic

Get the Insider News free each
morning.

Related Articles

Iterating through menustrip
items

LINQ on the command-line

Merge DataGrid Header

How To Lock Device Screen

A Beginner's Primer to
OpenMP
By logicchild, 19 Feb 2010

Introduction

There is a lot of technical documentation espousing concurrency
and parallel computing. Code can run concurrently on one
microprocessor, but unless there are multiple cores, or CPUs,
the code will not run in parallel. In this quest for data parallelism,
the for loop construct is often stressed because it is the only
control flow structure that steps over every item in, say, an array
of elements. This can, in most cases, define an iteration space,
where the bounds are divided. These separate parts that sum to
form the whole are executed simultaneously on separate cores
that reside on the same physical microprocessor. This article is
for the beginning student of OpenMP. Threading libraries like the
Intel TBB make strong use of the C++ language, but there is a lot
of research going on in order to make OpenMP work more
effectively with C++. This might involve some sort of integration
with the algorithms defined in the Standard Template Library. As
of the writing of this article, the current version of OpenMP is
version 3.0.

OpenMP is a means of achieving parallelism and therefore
concurrency using the C and FORTRAN languages, despite the
fact that there are a few C++ OpenMP source code examples
out there on the Internet. The OpenMP APIs define certain things
differently for both of those languages most of the time, but they
also define things the same way for certain elements some of the
time. In short, the idea is to find code blocks that can be
parallelized by using the pragma compiler directive. Other
looping constructs eventually branch out of the loop when a
condition is met or a condition is a Boolean true. An OpenMP
construct is defined to be a directive (pragma) plus a block of
code. It cannot be just any block of code: it must be a structured

 4.45 (7 votes)

articles

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

1 de 10 05/10/12 12:12

For Windows Mobile

Creating animations with
Dundas Chart for ASP.NET

Smarter Data Labels with
Dundas Chart SmartLabels

Understanding Chart Areas with
Dundas Chart for .NET

Using screensavers inside the
Windows Media Player

Making Sense of Geographic
Data with Dundas Map and
AJAX

Handling connection notification
between a desktop machine
and Windows CE based
devices

SmartLink

Create data-driven applications
with the Hera Application
Framework

Towards the self-documenting
database: extended properties

Accessibility audit vs.
accessibility testing

Digital Signatures and PDF
Documents

WMP Power Hour APP

How to Retrieve EMC Centera
Cluster/Pool Capabilities

Using Barcodes in Documents
– Best Practices

"Hey! Is That My Car? How to
Sharpen a QuickBird Satellite
Image Using DotImage"

Integrate your SharePoint
environment into the open
standards-based WebSphere
Portal platform using the Visual
Studio IDE

Retrieving and Storing Call
History

block. That is, a block with one point of entry at the top and a
single point of exit at the bottom. An OpenMP program,
therefore, cannot branch into or out of a structured block of code.
The student of OpenMP should refer to the home web site,
http://www.OpenMP.org, continually when referencing tutorials
that seek to explain how it works. The code examples provided
were compiled on the command line using the cl.exe compiler
and the /openmp switch.

Definitions

One of the goals the designers had for OpenMP is for programs
to execute and yield the same results whether they use one
thread or many threads. The term for a program to yield the
same results if it executed one thread or many is called
sequentially equivalent. Incremental parallelism refers to a
programming practice (which is not always possible) in which a
sequential program evolves into a parallel program. That is, the
programmer starts working with a sequential program from the
top down, block by block, and finds pieces of code that are better
off executing in parallel. Thus, parallelism is added incrementally.
Having said that, OpenMP is a collection of compiler directives,
library routines, and environmental variables that specify shared-
memory concurrency in FORTRAN, C, and (soon) C++
programs. Note that in the Windows OS, any memory that can
be shared is shared. OpenMP directives demarcate code that
can be executed in parallel (called parallel regions), and control
how code is assigned to threads. The threads in OpenMP code
operate under the fork-join model. When the main thread
encounters a parallel region while executing an application, a
team of threads is forked off, and these threads begin to execute
the code within the parallel region. At the end of the parallel
region, the threads within the team wait until all other threads in
the team have finished before being joined. The main thread
resumes serial execution with the statement following the parallel
region. The implicit barrier at the end of all parallel regions
preserves sequential consistency. More to the point, an
executing OpenMP program starts a single thread. At points in
the program where parallel execution is desired, the program
forks additional threads to form a team of threads. The threads
execute in parallel across a region of code called the parallel
region. At the end of the parallel region, the threads wait until the
full team arrives, and then they join back together. At that point,
the original or master thread continues until the next parallel
region (or end of the program).

All OpenMP pragmas have the same prefix of #pragma omp.
This is followed by an OpenMP directive construct and one or
more optional clauses to modify the construct. OpenMP is an
explicitly parallel programming language. The compiler doesn't
guess how to exploit concurrency. Any parallelism expressed in a
program is there because the programmer directed the compiler
to put it there. To create threads in OpenMP, the programmer
designates blocks of code that are to run in parallel. This is done
in C and C++ with the pragma used to define a parallel region

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

2 de 10 05/10/12 12:12

within an application: use the parallel construct:

#pragma omp parallel

Now, we will take a few simple examples. When compiled, this
code is meant to print a string to standard output console:

#include <stdio.h>
int main()
{
 printf("E is the second vowel\n");
}

Outputs "E is the second vowel".

Now, we add the compiler directive to define a parallel region in
this simple program:

#include <stdio.h>
#include "omp.h"
int main()
{
#pragma omp parallel
 {
 printf("E is the second vowel\n");
 }
}

With a dual-core processor, this is the output:

E is the second vowel
E is the second vowel

Now, we include a local variable:

#include <stdio.h>
#include "omp.h"
int main()
{
 int i=5;
#pragma omp parallel
 {
 printf("E is equal to %d\n",i);
 }
}

OpenMP is a shared-memory programming model. A good rule
that holds in most cases is that a variable allocated prior to the
parallel region is shared between the threads. So the program
prints:

E is equal to 5
E is equal to 5

The OpenMP specification includes a set of environmental
variables and API functions to enable control over the program.
One useful environmental variable is OMP_NUM_THREADS,

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

3 de 10 05/10/12 12:12

which will set the number of threads to be used for the team in
each parallel region. The corresponding API function to set the
number of threads is omp_num_threads(). If a variable is
declared inside a parallel region, it is said to be local or private to
a thread. In C, a variable declaration can occur in any block.
Such an example is shown below. Included is a call to a function
called omp_get_thread_num(). This integer function is part
of the OpenMP runtime library. It returns an integer unique to
each thread that ranges from zero to the number of threads
minus one.

#include <stdio.h>
#include <omp.h>
int main()
{

int i= 256; // a shared variable
#pragma omp parallel
 {

int x; // a variable local or private to each
thread
 x = omp_get_thread_num();
 printf("x = %d, i = %d\n",x,i);
 }
}

Output

x = 0, i = 256
x = 1, i = 256

//note the value of x decrements,
//while the value of i remains the same

Synchronization

Synchronization is all about timing. Threads running within a
process must sometimes access resources, because the
container process has created a handle table where the threads
can access resources by a handle identification number. A
resource could be a Registry key, a TCP port, a file, or any other
type of system resource. It is obviously important for those
threads to access those resources in an orderly fashion. It is also
obvious that two threads cannot execute simultaneously in the
same CRITICAL_REGION. For example, if one thread writes
some data to a message queue, and then another thread writes
over that data, then we have data corruption. More to the point,
we have a race condition: two threads race to execute at a single
instance because they (think) appear to be scheduled that way.
A race condition results in a serious system crash. So, how does
OpenMP handle these issues?

OpenMP has synchronization constructs that ensure mutual
exclusion to your critical regions. Use these when variables must
remain shared by all threads, but updates must be performed on
those variables in parallel regions. The critical construct acts like

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

4 de 10 05/10/12 12:12

a lock around a critical region. Only one thread may execute
within a protected critical region at a time. Other threads wishing
to have access to the critical region must wait until no thread is
executing the critical region. OpenMP also has an atomic
construct to ensure that statements will be executed in an
atomic, uninterruptible manner. There is a restriction on which
types of statements you can use with the atomic construct, and
you can only protect a single statement. The single and master
constructs will control execution of statements within a parallel
region so that only one thread will execute those statements (as
opposed to allowing only one thread at a time). The former will
use the first thread that encounters the construct, while the latter
will allow only the master thread (the thread that executes
outside of the parallel regions) to execute the protected code.

The OpenMP runtime library is then expressed in compiler
directives, but there are certain language features that can only
be handled by library functions. Here are a few of them:

omp_set_num_threads() takes an integer argument
and requests that the Operating System provide that
number of threads in subsequent parallel regions.
omp_get_num_threads() (integer function) returns
the actual number of threads in the current team of
threads.
omp_get_thread_num() (integer function) returns the
ID of a thread, where the ID ranges from 0 to the number
of threads minus 1. The thread with the ID of 0 is the
master thread.

And, here is code that uses some OpenMP API functions to
extract information about the environment:

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main (int argc, char *argv[])
{
int nthreads, tid, procs, maxt, inpar, dynamic,
nested;

/* Start parallel region */
#pragma omp parallel private(nthreads, tid)
 {

 /* Obtain thread number */
 tid = omp_get_thread_num();

 /* Only master thread does this */
 if (tid == 0)
 {
 printf("Thread %d getting environment info...\n",
tid);

 /* Get environment information */
 procs = omp_get_num_procs();
 nthreads = omp_get_num_threads();
 maxt = omp_get_max_threads();

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

5 de 10 05/10/12 12:12

 inpar = omp_in_parallel();
 dynamic = omp_get_dynamic();
 nested = omp_get_nested();

/* Print environment information */
 printf("Number of processors = %d\n", procs);
 printf("Number of threads = %d\n", nthreads);
 printf("Max threads = %d\n", maxt);
 printf("In parallel? = %d\n", inpar);
 printf("Dynamic threads enabled? = %d\n",
dynamic);
 printf("Nested parallelism supported? = %d\n",
nested);

 }

 }
}

Output

Thread 0 getting environment info...
Number of processors = 2
Number of threads = 2
Max threads = 2
In parallel? = 1
Dynamic threads enabled? = 0
Nested parallelism supported? = 0

Some More Core Concepts

In certain cases, a large number of independent operations are
found in loops. Using the loop worksharing construct in OpenMP,
you can split up these loop iterations and assign them to threads
for concurrent execution. The parallel for construct will initiate a
new parallel region around the single for loop following the
pragma, and divide the loop iterations among the threads of the
team. Upon completion of the assigned iterations, threads sit at
the implicit barrier at the end of the parallel region, waiting to join
with the other threads. It is possible to split up the combined
parallel for construct into two pragmas: a parallel construct and
the for construct, which must be lexically contained within a
parallel region. Here is an example of the former:

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>
#define CHUNKSIZE 10
#define N 100

int main (int argc, char *argv[])
{
 int nthreads, tid, i, chunk;
 float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

6 de 10 05/10/12 12:12

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk)
private(i,tid)
 {
 tid = omp_get_thread_num();

if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 printf("Thread %d starting...\n",tid);

#pragma omp for schedule(dynamic,chunk)
for (i=0; i < N; i++)

 c[i] = a[i] + b[i];
 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
 }

 } /* end of parallel section */

}

So the output would be:

Number of threads = 2
 Thread 1 starting...
 Thread 0 starting...
 Thread 0: c[10]= 20.000000
 Thread 1: c[0]= 0.000000
 Thread 0: c[11]= 22.000000
 Thread 1: c[1]= 2.000000
 Thread 0: c[12]= 24.000000
 Thread 1: c[2]= 4.000000
Thread 0: c[13]= 26.000000
Thread 1: c[3]= 6.000000
Thread 0: c[14]= 28.000000
Thread 1: c[4]= 8.000000
Thread 0: c[15]= 30.000000
Thread 1: c[5]= 10.000000
Thread 0: c[16]= 32.000000
Thread 1: c[6]= 12.000000
Thread 0: c[17]= 34.000000
Thread 1: c[7]= 14.000000
Thread 0: c[18]= 36.000000
Thread 1: c[8]= 16.000000
Thread 0: c[19]= 38.000000
Thread 1: c[9]= 18.000000
Thread 0: c[20]= 40.000000
Thread 1: c[30]= 60.000000
Thread 0: c[21]= 42.000000
Thread 1: c[31]= 62.000000
Thread 0: c[22]= 44.000000
Thread 1: c[32]= 64.000000
Thread 0: c[23]= 46.000000
Thread 1: c[33]= 66.000000

.

Thread 1: c[84]= 168.000000
Thread 1: c[85]= 170.000000
Thread 1: c[86]= 172.000000
Thread 1: c[87]= 174.000000

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

7 de 10 05/10/12 12:12

Thread 1: c[88]= 176.000000
Thread 1: c[89]= 178.000000
Thread 1: c[90]= 180.000000
Thread 1: c[91]= 182.000000
Thread 1: c[92]= 184.000000
Thread 1: c[93]= 186.000000
Thread 1: c[94]= 188.000000
Thread 1: c[95]= 190.000000
Thread 1: c[96]= 192.000000
Thread 1: c[97]= 194.000000
Thread 1: c[98]= 196.000000
Thread 1: c[99]= 198.000000
Thread 0: c[24]= 48.000000
Thread 0: c[25]= 50.000000
Thread 0: c[26]= 52.000000
Thread 0: c[27]= 54.000000
Thread 0: c[28]= 56.000000
Thread 0: c[29]= 58.000000

Clauses Used in the Data Environment

We begin by defining the terms we will use to describe the data
environment in OpenMP. In a program, a variable is a container
(or more concretely, a storage location in memory) bound to a
name and holding a value. Variables can be read and written as
the program runs (as opposed to constants that can only be
read). In OpenMP, the variable that is bound to a given name
depends on whether the name appears prior to a parallel region,
inside a parallel region, or following a parallel region. When the
variable is declared prior to a parallel region, it is by default
shared, and the name is always bound to the same variable.
OpenMP, however, includes clauses that can be added to
parallel and to the worksharing constructs to control the data
environment. These clauses affect the variable bound to a name.
A private (list) clause directs the compiler to create, for each
thread, a private (or local) variable for each name included in the
list. The names in the private list must have been defined and
bound to share variables prior to the parallel region. The initial
values of these new private variables are undefined, so they
must be explicitly initialized. Furthermore, after the parallel
region, the value of a variable bound to a name appearing in a
private clause for the region is undefined.

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define N 50
#define CHUNKSIZE 5

int main (int argc, char *argv[])
{
 int i, chunk, tid;
 float a[N], b[N], c[N];
 char first_time;

/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

8 de 10 05/10/12 12:12

first_time = 'y';

#pragma omp parallel for \
 shared(a,b,c,chunk) \
 private(i,tid) \
 schedule(static,chunk) \
 firstprivate(first_time)

 for (i=0; i < N; i++)
 {
 if (first_time == 'y')
 {
 tid = omp_get_thread_num();
 first_time = 'n';
 }
 c[i] = a[i] + b[i];
 printf("tid= %d i= %d c[i]= %f\n", tid, i, c[i]);
 }
}

The output is as expected:

tid= 0 i= 0 c[i]= 0.000000
tid= 1 i= 5 c[i]= 10.000000
tid= 0 i= 1 c[i]= 2.000000
tid= 1 i= 6 c[i]= 12.000000
tid= 0 i= 2 c[i]= 4.000000
tid= 1 i= 7 c[i]= 14.000000
tid= 0 i= 3 c[i]= 6.000000
tid= 1 i= 8 c[i]= 16.000000
tid= 0 i= 4 c[i]= 8.000000
tid= 1 i= 9 c[i]= 18.000000

. and so on

tid= 1 i= 47 c[i]= 94.000000
tid= 0 i= 43 c[i]= 86.000000
tid= 1 i= 48 c[i]= 96.000000
tid= 0 i= 44 c[i]= 88.000000
tid= 1 i= 49 c[i]= 98.000000

License

This article, along with any associated source code and files, is
licensed under The Code Project Open License (CPOL)

About the Author

logicchild
Other Pref. Trust

United States
Member

I started electronics training at age 33. I began studying
microprocessor technology in an RF communications oriented
program. I am 43 years old now. I have studied C code, opcode

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

9 de 10 05/10/12 12:12

Permalink | Advertise | Privacy | Mobile
Web01 | 2.6.121004.1 | Last Updated 20 Feb 2010

Article Copyright 2010 by logicchild
Everything else Copyright © CodeProject, 1999-2012

Terms of Use

Layout: fixed | fluid

Article Top Tweet

Search this forum Go

(mainly x86 and AT+T) for around 3 years in order to learn how
to recognize viral code and the use of procedural languages. I
am currently learning C# and the other virtual runtime system
languages. I guess I started with the egg rather than the chicken.
My past work would indicate that my primary strength is in
applied mathematics.

Comments and Discussions

You must Sign In to use this message board.

Profile popups Spacing Relaxed Noise Medium Layout

Normal Per page 25 Update

-- There are no messages in this forum --

Sign Up to vote Poor Excellent Vote

A Beginner's Primer to OpenMP - CodeProject http://www.codeproject.com/Articles/60176/A-Beginner-s-Pri...

10 de 10 05/10/12 12:12

