
© 2016 Docker

Docker for the
Virtualization
Admin

! eBook

© 2016 Docker 2

! eBook: Docker for the Virtualization Admin

Table of Contents
Containers are not VMs ________________________________ 03

Containers and VMs Together ___________________________ 05

Physical or Virtual ______________________________________ 08

Get Started ___ 1 0

© 2016 Docker 3

! eBook: Docker for the Virtualization Admin

A natural response when first working with Docker containers is
to try and frame them in terms of virtual machines. Oftentimes we
hear people describe Docker containers as “lightweight VMs”.

This is completely understandable, and many people have
done the exact same thing when they first started working with
Docker. It’s easy to connect those dots as both technologies share
some characteristics. Both are designed to provide an isolated
environment in which to run an application. Additionally, in both
cases that environment is represented as a binary artifact that can
be moved between hosts. There may be other similarities, but
these are the two biggest.

The key is that the underlying architecture is fundamentally different
between the containers and virtual machines. The analogy we
use here at Docker is comparing houses (virtual machines) to
apartments (Docker containers).

Houses (the VMs) are fully self-contained and offer protection from
unwanted guests. They also each possess their own infrastructure –
plumbing, heating, electrical, etc. Furthermore, in the vast majority
of cases houses are all going to have at a minimum a bedroom,

living area, bathroom, and kitchen. It’s incredibly difficult to ever
find a “studio house” – even if one buys the smallest house they
can find, they may end up buying more than they need because
that’s just how houses are built.

Apartments (Docker containers) also offer protection from
unwanted guests, but they are built around shared infrastructure.
The apartment building (the server running the Docker daemon,
otherwise known as a Docker host) offers shared plumbing,
heating, electrical, etc. to each apartment. Additionally apartments
are offered in several different sizes – from studio to multi-bedroom
penthouse. You’re only renting exactly what you need.

Docker containers share the underlying resources of the Docker
host. Furthermore, developers build a Docker image that includes
exactly what they need to run their application: starting with the
basics and adding in only what is needed by the application.

Virtual machines are built in the opposite direction. They start
with a full operating system and, depending on the application,
developers may or may not be able to strip out unwanted
components.

Containers are not VMs
Docker is one of the most successful open source projects in recent history, and organizations of
all sizes are developing plans around how to containerize their applications. The first step in this
journey is, of course, to understand what containers are, and what are their key benefits.

© 2016 Docker 4

! eBook: Docker for the Virtualization Admin

For a lot of people these concepts are easily grasped. However, even
when someone understands the architectural differences between
Docker containers and virtual machines, they will often still try and
adapt their current thoughts and processes around VMs to containers.

“How do I backup a container?”

“What’s my patch management strategy for my running
containers?”

“Where does the application server run?”

To many the light bulb moment comes when they realize that
Docker is not a virtualization technology, it’s an application delivery
technology.

In a VM-centered world, the unit of abstraction is a monolithic VM
that stores not only application code, but often the stateful data. A
VM takes everything that used to sit on a physical server and just
packs it into a single binary so it can be moved around. But it is still
the same thing.

With Docker containers the abstraction is the application; or more
accurately a service that helps to make up the application.

In a micro-services architecture, many small services (each
represented as a single Docker container) comprise an application.
Applications are now able to be deconstructed into much smaller
components which fundamentally changes the way they are initially
developed, and then managed in production.

So, how does a sysadmin backup a Docker container? They don’t.
The application data doesn’t live in the container, it lives in a Docker
volume that is shared between 1-N containers as defined by the
application architecture. Sysadmins backup the data volume,
and forget about the container. Optimally Docker containers are
completely stateless and immutable.

Certainly patches will still be part of the sysadmin’s world, but they
aren’t applied to running Docker containers. In reality if someone
patched a running container, and then spun up new containers
based on an unpatched image, serious chaos could ensue. Instead
admins update their existing Docker image, stop their running
containers, and start up new ones. Because a container can be
spun up in a fraction off a second, these updates are done in
exponentially more quickly than they are with virtual machines.

Application servers translates into a service run inside of a Docker
container. Certainly there may be cases where microservices-based
applications need to connect to a non-containerized service, but
for the most part standalone servers where application code is
executed give way to one or more containers that provide the
same functionality with much less overhead (and much better
horizontal scaling). "

© 2016 Docker 5

! eBook: Docker for the Virtualization Admin

At the most basic level VMs (in all their forms) are a great place for
Docker hosts to run. Whether it’s a vSphere VM or a Hyper-V VM or
an AWS EC2 instance, all of them will serve equally well as a Docker
host. Depending on what you need to do, a VM might be the best
place to land those containers. But the great thing about Docker is
that, it doesn’t matter where you run containers – and it’s totally up
to you.

Another question that is often asked relates to whether or not
Docker container-based services can interact with VM-based
services. Again, the answer is absolutely yes. Running your
application in a set of Docker containers doesn’t preclude it from
talking to the services running in a VM.

For instance, your application may need to interact with a database
that resides in a virtual machine. Provided that the right networking
is in place, your application can interact with that database
seamlessly.

Another area where there can be synergy between VMs and
Docker containers is in the area of capacity optimization. VMs
gained early popularity because the enabled higher levels of server
utilization. That’s still true today. A virtualization host, for instance,
can host VMs that may house Docker hosts, but may also host any
number of traditional monolithic VMs. By mixing and matching
Docker hosts with “traditional” VMs, sysadmins can be assured they
are getting the maximum utilization out of their physical hardware.

Containers
and VMs
Together
So if containers are not VMs, a logical
question is: Can VMs and Docker
containers coexist??

The answer is a resounding “yes.”

© 2016 Docker 6

! eBook: Docker for the Virtualization Admin

Docker embraces running Docker hosts on a wide variety of
virtualization and cloud platforms. Docker Cloud and Docker
Datacenter can easily manage Docker hosts regardless of where
they run. And with Docker Machine you can provision new Docker
hosts onto a wide variety of platforms including VMware vSphere,
Microsoft Hyper-V, Azure, and AWS.

One of the most powerful things about Docker is the flexibility
it affords IT organizations. The decision of where to run your

applications can be based 100% on what’s right for your business.
You’re not locked into any single infrastructure, you can pick and
choose and mix and match in whatever manner makes sense for
you organization. Docker hosts on vSphere? Great. Azure? Sure.
Physical servers? Absolutely. With Docker containers you get a this
great combination of agility, portability, and control. "

© 2016 Docker 7

! eBook: Docker for the Virtualization Admin

Try Docker Datacenter free for 30 days
WWW.DOCKER.COM/ENTERPRISE

CONTROL
Securely orchestrate

and manage containers
at scale at optimal costs.

AGILITY
Deliver innovation at
speed. Docker helps
companies ship up to

13X more software.

PORTABILITY
Gain full stack portability
of applications, networks,

storage across
any infrastructure.

Modernize and secure the software
supply chain with Docker.

Docker Datacenter delivers an integrated and robust
platform for container orchestration and management that
is flexible to integrate into existing systems and processes.

WWW.DOCKER.COM/ENTERPRISE

© 2016 Docker 8

! eBook: Docker for the Virtualization Admin

Physical or Virtual?
Virtual machines make great Docker hosts, but
often companies wonder if containers would
be better served running on bare metal physical
servers.

And when they pose this question to Docker experts, the
conversation goes something like this:

Docker Expert: It’s not a question of “either / or” – that’s the
beauty of Docker. That choice is based solely on what’s right
for your application and business goals – physical or virtual,
cloud or on premise. Mix and match as your application and
business needs dictate (and change).

User: But, surely you have a recommendation.

Docker Expert: I’m going to give you the two word answer
that nobody likes: “It depends.”

User: You’re right, I don’t like that answer.

Docker Expert: I kind of figured you wouldn’t, but it really is
the right answer.

There are tough questions in the world of tech, and the answer “It
depends” can often be a way of avoiding them. But in the case of
where to run your containerized applications it really is the best
answer because no two applications are exactly the same, and no
two companies have exactly the same business needs.

Any IT decision is based on a myriad of variables: Performance,
scalability, reliability, security, existing systems, current skillsets, and
cost (to name just a few). When someone sets out to decide how to
deploy a Docker-based application in production all of these things
need to be considered.

Docker delivers on the promise of allowing you to deploy your
applications seamlessly regardless of the underlying infrastructure.
Bare metal or VM. Datacenter or public cloud. Heck, deploy
your application on bare metal in your data center and on VMs
across multiple cloud providers if that’s what is needed by your
application or business.

The key here is that you’re not locked into any one option. You can
easily move your application from one infrastructure to another.
There is essentially zero friction.

But that freedom also makes the process of deciding where to run
those applications seem more difficult than it really is. The answer
is going to be influenced what you’re doing today, and what you
might need to do in the future.

© 2016 Docker 9

! eBook: Docker for the Virtualization Admin

And, while there is no easy answer to this question, there are a
number of things to consider when it comes time to make your
decision.

The list here is probably far from complete, but hopefully it’s
enough to start a conversation and get the gears turning

Latency: Applications with a low tolerance for latency are going to
do better on physical. This something we see quite a bit in financial
services (trading applications are prime example).

Capacity: VMs made their bones by optimizing system load. If your
containerized application doesn’t consume all the capacity on a
physical box, virtualization still offers a benefit here.

Mixed Workloads: Physical servers will run a single instance of an
operating system. So, you if you wish to mix Windows and Linux
containers on the same host, you’ll need to use virtualization

Disaster Recovery: Again, like capacity optimizations, one of
the great benefits of VMs are advanced capabilities around
site recovery and high availability. While these capabilities may
exist with physical hosts, the are a wider array of options with
virtualization.

Existing Investments and Automation Frameworks: A lot of the
organizations have already built a comprehensive set of tools
around things like infrastructure provisioning. Leveraging this
existing investment and expertise makes a lot of sense when
introducing new elements.

Multitenancy: Some customers have workloads that can’t share
kernels. In this case VMs provide an extra layer of isolation
compared to running containers on bare metal.

Resource Pools / Quotas: Many virtualization solutions have a
broad feature set to control how virtual machines use resources.
Docker provides the concept of resource constraints, but for bare
metal you’re kind of on your own.

Automation/APIs: Very few people in an organization typically
have the ability to provision bare metal from an API. If the goal
is automation you’ll want an API, and that will likely rule out bare
metal.

Licensing Costs: Running directly on bare metal can reduce costs
as you won’t need to purchase hypervisor licenses. And, of course,
you may not even need to pay anything for the OS that hosts your
containers.

In the end, there is something really powerful about being able to
make a decision on where to run your application solely based on
the technical merits of the platform AND being able to easily adjust
that decision if new information comes to light.

In the end the question shouldn’t be “bare metal OR virtual” – the
question is which infrastructure makes the most sense for my
application needs and business goals. So mix and match to create
the right answer today, and know with Docker you can quickly and
easily respond to any changes in the future. "

© 2016 Docker 10

! eBook: Docker for the Virtualization Admin

We already know that containers and VMs can coexist, so there is
not going to be a single answer to this question. As with every step
in this journey, admins need to consider a series of different factors.
With that context here are three scenarios to consider when
deciding where to deploy your application.

1) If you’re starting from scratch on a new application (or
rewriting an existing application from the ground up), and
you’re committed to writing it around a microservices-based
architecture then containers are a no brainer.

In many cases, companies will leave their existing monolithic
applications in place, while they develop the next version using
Docker containers and microservices

By leveraging Docker, companies can accelerate application
development and delivery efforts, while creating code that can be
run across almost any infrastructure without modification.

2) You are committed to developing software based on
microservices, but rather than wait until an application is
completely rewritten, you want to begin gaining benefits of
Docker immediately.

In this scenario, companies will “lift and shift” an existing application
from a VM into a Docker container.

With the monolithic application running in a container, the
development teams can start breaking it down piece by piece.
They can move some functions out of the monolith, and begin
deploying them as loosely coupled services in Docker containers.

The new containers can interact with older, legacy applications
(regardless of where they are running) as necessary, and over time
the entire application is deconstructed, and deployed as a series of
portable and scalable services inside Docker containers.

Getting Started
A move to Docker has to start somewhere. Admins are being asked simultaneously to maintain
existing legacy applications as well as roll out new ones. With Docker now in their technology
toolbox, they often end up asking themselves where these applications should be run: in a VM or
in a container.

© 2016 Docker 11

! eBook: Docker for the Virtualization Admin

3) There are cases much like the second case, where companies
want some benefits that Docker offers, and they move
monolithic applications from VMs to containers with no
intention of ever rewriting them.

Typically these customers are interested in the portability aspect
that Docker containers offer out of the box. Imagine if your CIO
came to you and said “Those 1,000 VMs we got running in the
data center, I want those workloads up in the cloud by the end of
next week.” That’s a daunting task even for the most hardcore VM
ninja. There just isn’t good portability from the data center to the
cloud, especially if you want to change vendors. Imagine you have
vSphere in the datacenter and the cloud is Azure — VM converters
be what they may.

However, with Docker containers, this becomes a pretty pedestrian
effort. Docker containers are inherently portable and can run in a
VM or in the cloud unmodified, the containers are portable from
VM to VM to bare metal without a lot of heavy lifting to facilitate
the transition.

If any of these scenarios resonate with you, then you’ve probably
got a good case to start trying Docker. "

To learn more and get started today visit
www.docker.com/enterprise

http://www.docker.com/enterprise

© 2016 Docker

