A COMMON AND A COMPANY

State nie

Fundamentals of Computer Science

Engineering Degree – 2010-2011 Ismael Etxeberria Agiriano 20/09/2010

Universidad del País Vasco Unibertsitatea

Terretariality on Carle we will a share and

Escuela Universitaria Ing de Ingeniería Uni Vitoria-Gasteiz Vito

Ingeniaritzako Unibertsitate Eskola Vitoria-Gasteiz

Index

1. Introduction to programming

- 1. Ex01: Empty
- 2. Ex02: Greeting
- 3. Ex03: Assignment
- 4. Ex04: Reading
- 5. Ex05: Concatenation
- 6. Ex06: Conversion
- 7. Summary
- 8. FC vs VB notation
- 9. Exercise

"Linterior Si an Derra

Ex01: Empty

1. Example 01

- Title
 - Empty subprogram (Button 1)
- Name •
 - cmd1_Click
- Description •
 - Subprogram not doing anything
- **Observations** •
 - Beginning and ending of a subprogram
 - VB implementation
 - Basic pattern

Ex01: Empty

Ex01: Flowchart

• Starting point

- Subprogram name
- Control name (cmd1) + event (Click)
- Ending point
 - Unique for each flowchart
 - FC code: End

Ex01: Empty

Ex01: VB implementation

Private Sub cmd1_Click()
End Sub

It automatically sets **Private**. It is not necessary but it may stay

The VB environment proposes the skeleton for the associated subprogram by clicking on the cmd1 command button in design mode

Ex02: Greeting

2. Example 02

- Title
 - Greeting (Button 2)
- Name •
 - cmd2_Click
- Description •
 - Subprogram to say hello
- **Observations** •
 - Writing a literal text on the screen

Ex02: Greeting

Ex02: Flowchart

- The writing instruction will be expressed in the flowchart as Write
- In general we shall not provide details on how to write ٠ things in the flowchart. We may have some annotations next to it with that purpose.

Ex03: Assignment

3. Example 03

- Title
 - Assignment (Button 3)
- Name
 - cmd3_Click
- Description •
 - Definition of a string variable and assignment of a fixed value, displaying it on the screen

Observations •

- Variables declaration
- Assignment of a value to a variable (\leftarrow)
- Writing the value of a variable

Ex03: Assignment

Ex03: Flowchart

- We must declare all the variables used in the program, indicating their type, for example, string
- We underline these keywords (e.g. string, Write) to differentiate them from the invented names (e.g. nam)
 - With an assignment a variable receives (\leftarrow) a value

- To declare a variable in VB, after the <u>Dim</u> keyword we specify the **name** of the variable, for example, nam, after the <u>As</u> keyword, followed by the **type**, e.g. <u>String</u>
- Assignments in VB are expressed by means of the = symbol
- The left part of an assignment must always have a variable and the right part an expression to be evaluated Do not mix assignment and equality!

Ex04: Reading

4. Example 04

- Title
 - Reading (Button 4)
- Name
 - cmd4_Click
- Description
 - Subprogram to read a name and display it on the screen
- Observations
 - Reading a value

Examples 1	L
Name:	Aceptar
	Cancelar
Peter	

Ex04: Reading

Ex04: Flowchart

- Instead of assigning a fixed constant value to nam, as in Ex03, we now read this value from the keyboard.
- The reading instruction of a string will be expressed as **ReadString** in the flowchart
- After we write the read value on the screen
- Note that we don't give details on how to write things

Ex04: Reading

Ex04: VB implementation

To read in VB we utilize the **InputBox** instruction, which • always returns a string

Examples 1	
Name:	Aceptar
	Cancelar
Peter	
1	

14

Ex05: Concatenation

5. Example 05

- Title
 - Concatenation (Button 5)
- Name •
 - cmd5_Click
- Description \bullet
 - Subprogram to read a name and obtain a greeting string by concatenating a literal string to it
- Observations •
 - Multiple variables declaration
 - Expression: concatenation

Ex05: Concatenation

Ex05: VB implementation

Concatenate "Hello " and nam and assign the result to the greeting variable

Multiple declaration

Dim nam As String, greeting As String

We may declare several VB variables separated by a comma but we must specify the type again

Ex06: Conversion

6. Example 06

- **Title**
 - Conversion (Button 6)
- Name
 - cmd6_Click
- Description \bullet
 - Ask for a quantity in euros, convert it into pesetas and display the resulting value

Observations

- Reading real numbers
- Expression: multiplying
- Constants

Ex06: Conversion

Ex06: Flowchart

Ex06: Conversion

Ex06: VB implementation

following line

8: Notation table I

8. FC vs VB notation (I)

Flowchart	Visual Basic	Comment
\leftarrow	=	Assignment
+	+	Sum
		Subtraction, change sign
•	*	Product
Div	\	Integer division
Mod	Mod	Division modulus (rest)
/	/	Real division
+	&	Concatenation
<u>integer</u>	Integer	Integer (2 bytes)
real	Double	Real (double precision)
string	String	Character string

8: Notation table II

8. FC vs VB notation (II)

Flowchart	Visual Basic	Comment
ReadString	InputBox	String reading
ReadInteger	InputBox, CInt	Integer reading
ReadReal	InputBox, CDbl	Real number reading
EndProgram	End	Finish the whole program exec.
toInteger	CInt	Convert into integer
toReal	<u>CDbl</u>	Convert into real (double)
toString	CStr	Convert into string
NewLine	vbCrLf	New line
Write	MsgBox	Write a message box
	Option Explicit	Force variable declarations

Exr01: Interests

9. Exercise

- Title
 - Interests (Button 7)
- Name
 - Exr01_Click
- Description
 - Design an implement a VB program to calculate the interest of a given quantity with a yearly basis interest rate given a certain number of days assuming the year has exactly 365 days. Obtain the gross interest and the net interest knowing the we suffer a retention of an 18%.

Exr01: Interests

Exr01: Analysis

- Known information
 - Days in a year = 365
 - Retention rate = 18% (rr)
- Information to read
 - Face value (fv)
 - Interest rate (ir)
 - Number of days (nd)
- Information to calculate
 - Gross interest (gi)
 - Net interest (ni)

Exr01: Interests

Exr01: Flowchart

- Retention rate = 18% (rr)
- Days in a year = 365
- Face value (fv)
- Interest rate (ir)
- Number of days (nd)
- Gross interest (gi)
- Net interest (ni)

Escuela Universitaria Ingeniaritzako de Ingeniería Unibertsitate Eskola Vitoria-Gasteiz Vitoria-Gasteiz

Universidad del País Vasco

1

Euskal Herriko Unibertsitatea