

Fundamentals of Computer Science

2010-2011

Laboratory 12

Vectors (2)

Operations with vectors

Interface

Figure 12.1 Interface of the program of operations with vectors.

Operation

In the previous laboratory some exercises to obtain a list of random marks were proposed. In

this laboratory we retake part of the code to simplify the introduction of testing numbers from the

keyboard. In general we shall use mark vectors (real numbers from 1 to 10) although in the last

exercise we retake the generation of six different integer numbers from 1 to 49 to fill a lottery

ticket in a sorted manner.

The basic operation of each button consists in generating one or two random lists from 0 to 10

and obtain minimum, maximum, sum and arithmetic mean of the elements, obtain a copy of the

Objectives:

� Practice with typical algorithms using vectors (one-dimensional arrays)

 Fundamentals of Computer Science 2010-2011 Lab 12

 2 / 7

vector, sum two vectors, sort a vector and the afore mentioned list of lottery numbers. Lets study

them step by step.

“Minimum mark” button

We declare a vector v() with elements and we fill it with random real numbers from 0 to 10

using the o IniMarksVector, the same used in laboratory 11. We call the iMin function, which

returns the index of the smallest of the n elements of a vector; we show the vector with

ShowDblVector, which is similar to the one seen in the previous laboratory but this time we

show the data on a picture box instead of using MsgBox; finally we show the smallest.

Sub cmd1_Click()

 Dim v(1 To 20) As Double

 Dim i As Integer

 Dim min As Double

 pctRes.Cls ' Clear the results picture box

 Randomize ' Initialise the seed with the system clock

 Call IniMarksVector(v)

 i = iMin(20, v)

 min = v(i)

 Call ShowDblVector(v)

 pctRes.Print "Minimum: " & Format(min, "0.00")

End Sub

As a reminder the subprogram to initialise the vector of marks:

Sub IniMarksVector(ByRef v() As Double)

 Dim i As Integer

 For i = LBound(v) To UBound(v) Step 1

 v(i) = Rnd * 10

 Next i

End Sub

The flow diagram for function iMin to obtain the index of the smallest element of the vector

is shown in Figure 12.2. Given this index we can obtain the smallest number, min. Note that this

number may be repeated although not probable as the random number generator gives series of

different numbers. Even if we format these numbers they will be stored with a better precision.

The procedure to show in the picture box the vector formatted could be:

Sub ShowDblVector(ByRef v() As Double)

 Dim i As Integer

 For i = LBound(v) To UBound(v) Step 1

 pctRes.Print Format(v(i), "0.00")

 Next i

End Sub

 Fundamentals of Computer Science 2010-2011 Lab 12

 3 / 7

Figure 12.2 Flowchart iMin for the function.

“Maximum mark” button

The action is similar to the previous “Minimum mark”.

“Sum vector” button

Obtains the sum of the elements of the vector:

Sub cmd3_Click()

 Dim v(1 To 20) As Double

 Dim sum As Double

 pctRes.Cls

 Randomize

 Call IniMarksVector(v)

 sum = SumVector(20, v)

 Call ShowDblVector(v)

 pctRes.Print "Sum: " & Format(sum, "0.00")

End Sub

“Arithmetic mean” button

It obtains the arithmetic mean of the elements of the vector. It may be obtained straight

dividing the value obtained in the previous function SumVector by the number of elements.

Sub cmd4_Click()

 Dim v(1 To 20) As Double

 Dim amean As Double

 pctRes.Cls

 Randomize

 Call IniMarksVector(v)

 amean = ArithMean(10, v)

i ≤ n

Ye
s

i ← i + 1

i ← 2
No

m ← 1

i, m: integer

iMin ← m

End

v(i) < v(m)
no yes

iMin
n: integer
v: array of real integer

m ← i

 Fundamentals of Computer Science 2010-2011 Lab 12

 4 / 7

 Call ShowDblVector(v)

 pctRes.Print "Arithmetic mean: " & Format(amean, "0.00")

End Sub

“Copy vector” button

It obtains a copy of the vector. We define a vector v1 and we initialise it using the

IniMarksVector procedure, copying it to the destination vector v2; we then show both at the

picture box.

Sub cmd5_Click()

 Dim v1(1 To 10) As Double, v2(1 To 10) As Double

 pctRes.Cls

 Randomize

 Call IniMarksVector(v1)

 Call CopyVector(10, v1, v2)

 pctRes.Print "Original vector:"

 Call ShowDblVector(v1)

 pctRes.Print "Copied vector:"

 Call ShowDblVector(v2)

End Sub

The header for the copying procedure is given in Figure 12.3.

Figure 12.3 Header for the procedure to copy a vector on another.

“Sum vectors” button

It obtains the sum of two vectors. We define two vectors v1 and v2; we initialise them by

means of procedure IniMarksVector and we add them to a result vector v, showing the contents

of the three in the picture box.

Sub cmd6_Click()

 Dim v1(1 To 7) As Double, v2(1 To 7) As Double

 Dim v(1 To 7) As Double

 pctRes.Cls

 Randomize

 Call IniMarksVector(v1)

 Call IniMarksVector(v2)

 Call SumVectors(7, v1, v2, v)

 pctRes.Print "Vector 1:"

 Call ShowDblVector(v1)

 pctRes.Print "Vector 2:"

 Call ShowDblVector(v2)

 pctRes.Print "Sum vector:"

 Call ShowDblVector(v)

End Sub

CopyVector
n: integer
vo: array of real vd: array of real

 Fundamentals of Computer Science 2010-2011 Lab 12

 5 / 7

The summing procedure will have the header shown in Figure 12.4.

Figure 12.4 Header for the procedure to sum vectors.

“Sort vector” button

It fills a vector, it obtains a copy and it sorts the copy, showing both vectors as they result.

Sub cmd7_Click()

 Dim v1(1 To 10) As Double, v2(1 To 10) As Double

 pctRes.Cls

 Randomize

 Call IniMarksVector(v1)

 Call CopiaVector(10, v1, v2)

 Call OrdenaVector(10, v2)

 pctRes.Print "Original vector:"

 Call ShowDblVector(v1)

 pctRes.Print "Sorted vector:"

 Call ShowDblVector(v2)

End Sub

The header for the sorting procedure is shown in Figure 12.5.

Figure 12.5 Header for the procedure to sort a vector.

Note that v is an input/output parameter.

To sort the vector we use an easy algorithm whose diagram is shown in Figure 12.6.

Described in words, we search for the index of the smallest and exchange it with the first one,

after the second and successively.

SumVectors
n: integer
v1, v2: vector of real v: vector of real

SortVector
n: integer
v: vector of real v: vector of real

 Fundamentals of Computer Science 2010-2011 Lab 12

 6 / 7

Figure 12.6 Flowchart of the sorting procedure

We shall use the iMin2 function that returns the index of the smallest element of a vector in

between to indices, i and n. This function if similar to iMin, used in the “Minimum mark” button,

whose flowchart is shown in Figure 12.2, with the difference that instead of starting from 1 it

receives the index of the position to start as an input parameter.

We also use the Swap function that, as its own name says, swaps the contents of its arguments.

Figure 12.7 shows its header, with x and y as both input and output parameters.

Figure 12.7 Flowchart of the header of procedure Swap.

“Sorted lottery” button

It generates a set of six random numbers in between 1 and 49 sorted in a vector. It uses for so

the sorted insertion algorithm, that is, for each new generated number we calculate the position

where it should go. If it already exists it will not be inserted; if it doesn’t exist we will shift right

all the rest of the numbers at the right of the position to make room for the new number.

The code associated with the proposed button follows. The PosOrd inserts the new number num

at the end of the list (called sentry) and returns the position of the first element greater than or

equal to num. This way we know that we will always find at least one number greater than or

equal to the sentry. If it exists it will give us the position (and we needn’t do anything). If it

SwapSwapSwapSwap x, y: integer x, y: integer

i ≤ n-1

Yes

i ← i + 1

i ← 1
No

m ← iMin2(i, n, v)

i, m: integer

End

i <> m
no yes

Swap (v(i), v(m))

SortVector
n: integer
v: vector of real v: vector of real

m ← iMin2(i, n, v)

i ≠ m

 Fundamentals of Computer Science 2010-2011 Lab 12

 7 / 7

needs to be added at the end we only need to increment the counter of inserted numbers

expressing that it is already inserted.

Sub cmd8_Click()
 Dim n As Integer, i As Integer
 Dim p As Integer
 Dim num As Integer
 Dim v(1 To 6) As Integer

 pctRes.Cls
 n = 0
 Do
 num = RandInterv (1, 49)
 p = PosOrd(num, n, v)
 If p <= n Then

 If v(p) <> num Then ' if equal it was already in the vector
 For i = n To p Step -1 ' shift right starting at position p
 v(i + 1) = v(i)
 Next i
 n = n + 1
 v(p) = num
 End If
 Else
 n = n + 1
 ' PosOrd has already introduced num at this position
 End If
 Loop Until n = 6
 Call ShowVectorInt(v)
End Sub

Figure 12.8 represents the flowchart of function PosOrd with the previously described

behaviour.

Note that we use a While loop as we don’t know in advance how many comparisons need to

be done.

Figure 12.8 Flowchart of function PosOrd.

v(i) < num

Yes

i ← i + 1

No

v(n+1) ← num
i ← 1

i: integer

PosOrd ← i

End

PosOrd
num: real
n: integer
v: vector of real

integer

