

Fundamentals of Computer Science

2010-2011

Laboratory 11

Vectors (1)

Random numbers program

Interface

Figure 11.1 Objects present in the random number generating program.

Operation

We are going to solve part of this exercise to demonstrate the use of pseudo-random variables

in Visual Basic.

The Rnd function returns a pseudo-random real number with a uniform distribution in the [0,

1) interval (from 0 to 1, the latter excluded). With uniform distribution we mean that all numbers

have the same possibility, as it happens when we toss a coin: the number of heads tends to be the

same as the number of tails.

Objectives:

� Acquire abilities in the use of vectors (one-dimensional arrays)

� Get to know the generation of pseudo-random numbers
� Lower and Upper bound of a VB vector: LBound and UBound
� Initialise a vector using the Array instruction

 Fundamentals of Computer Science 2010-2011 Lab 11

 2 / 6

We call them pseudo-random numbers because they are not really random: within the series a

given number always has the same number after it. If we start from the same number we always

obtain the same series. This first number of the series is called seed.

“Marks list” button

The first button of this program shows the scenario of an arbitrary lecturer that uses a program

to generate random marks from 0 to 100 (although never gives a mark of 10 to anyone). If you

check carefully you’ll realise that clicking on this button at the beginning of the program we

always get the same marks, the ones shown in Figure 11.2.

Figure 11.2 List of notes just after executing the program.

This fact of always obtaining the same series of numbers (we shall see the implementation a

little further) is due to the fact that, if we do not indicate the contrary, Visual Basic always

initialises the seed with the same value. If we use a subprogram IniMarksVector to initialise the

vector to a list of random numbers and the subprogram ShowDblVector to show the whole

vector using MsgBox the action associated to the click on the button is quite simple:

Sub cmd1_Click()
 Dim v(1 To 10) As Double
 Call IniMarksVector(v)
 Call ShowDblVector(v)
End Sub

The IniMarksVector procedure will make use of the lower bound (LBound) and upper

bound (UBound) to fill all the vector with values in the interval [0, 10), multiplying by 10 the

values obtained in the [0, 1) interval. Observe how we pass the vector parameter by reference.

We could have omitted the ByRef key word, as it is the default value.

Sub IniMarksVector(ByRef v() As Double)
 Dim i As Integer
 For i = LBound(v) To UBound(v) Step 1
 v(i) = Rnd * 10
 Next i
End Sub

 Fundamentals of Computer Science 2010-2011 Lab 11

 3 / 6

The ShowDblVector procedure obtains a string the list of values of the vector and after shows

them using MsgBox.

To align all values we use the Format function seen in the previous lab.

Sub ShowDblVector(ByRef v() As Double)
 Dim i As Integer
 Dim s As String
 s = ""
 For i = LBound(v) To UBound(v) Step 1
 s = s & Format(v(i), "0.00") & vbCrLf
 Next i
 MsgBox s
End Sub

 “Random marks list” button

The only difference with the result of executing the action associated with this button is that

we are not going to always show the same list of random numbers as we shall use the

Randomize instruction that modifies the seed (first number of the series) each time with the

system clock.

We may reuse everything seen for the previous button (it is not necessary to redefine the

subprograms IniMarksVector y ShowDblVector .

The code (in grey the elements that don’t change) follows:

Sub cmd2_Click ()
 Dim v(1 To 10) As Double
 Randomize
 Call IniMarksVector(v)
 Call ShowDblVector(v)
End Sub

We could have called directly the previous subprogram but it is not recommended because it

is easier to change the actions associated with a button without checking the impacts (who uses

it):

Sub cmd2_Click ()
 Randomize
 Call cmd1_Click
End Sub

“Dice list” button

This button shows a list of numbers from 1 to 6 simulating a die. To do so we need a function

to generate them maintaining the uniform distribution.
1
.

1
 To illustrate this problem imagine that we want to obtain numbers from 1 to 4 using numbers from 1 to 6 by

throwing a die. If we calculate the number just by dividing the number by 4 and adding 1 we only obtain numbers

from 1 to 4 but numbers 1 and 2 will be twice as frequent as numbers 3 and 4 which would receive the occurrences

of 5 and 6 respectively.

 Fundamentals of Computer Science 2010-2011 Lab 11

 4 / 6

This function if given as a recipe:

Function RandInterv(ByVal min As Long, ByVal max As Long) As Long
 RandInterv = Int((max - min + 1) * Rnd) + min
End Function

With this the code for the button to show the list of dice follows:

Sub cmd3_Click()
 Dim v(1 To 10) As Integer
 Randomize
 Call IniDiceVector(v)
 Call ShowIntVector(v)
End Sub

We have used two new procedures: IniDiceVector y ShowIntVector . The first is similar to

that to fill the marks but now we fill it with numbers from 1 to 6 calling function RandInterv .

Sub IniDiceVector(ByRef v() As Integer)
 Dim i As Integer
 For i = LBound(v) To UBound(v) Step 1
 v(i) = RandInterv(1, 6)
 Next i
End Sub

The ShowIntVector procedure is similar al to the one seen for real numbers.

“Distribution” button

This button measures the “quality” of the random number generator. It declares a vector with

600 integer numbers and fills it with random numbers from 1 to 6 like in the previous exercise

(“throws” 600 times the die). Following this it will count occurrences of number 1, number 2 and

son on. With a pure uniform distribution each of the number should appear exactly the same

number of times, 100 in our case.

“Lottery numbers” button

This button generates 6 different numbers from 1 to 49 to fill in the lottery ticket.

To do so it uses the function PosInVector which return the position of a number num in

vector v assuming that there are n valid elements and that the first valid element in the vector is

1. If num is not found in the vector it returns a 0.

The header of the function is as follows:

Function PosInVector(ByVal num As Integer, ByRef v() As Integer, _

 ByVal n As Integer)_

 As Integer

It is noted that in this function the vector is passed by reference but it is an input parameter,

that is, it is not modified inside the function.

 Fundamentals of Computer Science 2010-2011 Lab 11

 5 / 6

Checking an account number with a coefficient vector (resolved)

Interface

Figure 11.3 Bank account checking

Operation

In the previous laboratory an exercise to check a bank account was proposed (exercise 10.2).

In this laboratory we propose, as a demonstration, a solution for the calculation of the digits

using a coefficient vector (see Table 10.3 in the previous laboratory).

Proposed code

1. The code associated with the button will be similar but we now define a vector of
coefficients k() .

2. The definition of the variable will be with type Variant.

 Dim k() As Variant

3. If we want to initialise vector k with a set of values we do it through the VB Array
instruction.

 k = Array(4, 8, 5, 10, 9, 7, 3, 6)

4. Defined the coefficients vector we may carry out the calculation of the control digit using
the CalCtrlDig function. Using this function the code for the Check button could be:

Sub cmdComprobar_Click()
 Dim d1 As Integer, d2 As Integer
 Dim k() As Variant
 ...
 k = Array(4, 8, 5, 10, 9, 7, 3, 6)
 d1 = CalCtrlDig(txtEnt. Text & txtOfi. Text, k)
 k = Array(1, 2, 4, 8, 5, 10, 9, 7, 3, 6)
 d2 = CalCtrlDig(txtCta. Text, k)
 If txtCtr.Text = d1 & d2 Then
 MsgBox "Correct bank account"
 ...
End Sub

 Fundamentals of Computer Science 2010-2011 Lab 11

 6 / 6

5. The CalCtrlDig calculation function will make use of the lower bound (LBound) and

upper bound (UBound) functions to obtain the limits of the vector. Note that this is done to
simplify the parameter passing to the function.

Function CalCtrlDig(ByVal str As String, ByRef k() As Variant) _

 As Integer
 Dim d As Integer, i As Integer
 d = 0
 For i = LBound(k) To UBound(k) Step 1
 d = d + CInt(Mid(str, i + 1, 1)) * k(i)
 Next i
 d = 11 - d Mod 11
 If d > 9 Then
 d = 11 – d
 End If
 CalCtrlDig = d
End Function

Rnd Seudo-random numbers with uniform distribution in [0, 1)
Randomize Initialise the random number seed with the system clock
LBound (v()) As Long Obtain the lower bound of a vector
UBound (v()) As Long Obtain the upper bound of a vector

Table 11.1 List of relevant functions in Visual Basic

