

Fundamentals of Computer Science

2010-2011

Laboratory 10

Functions and procedures (3)

Complete program to solve a 2
nd
 degree equation

Interface

Figure 10.1 Objects present in the interface of the equation calculator.

Operation
This program is similar to that of Laboratory 4 to solve 1

st
 and 2

nd
 degree equations, apart

from considering as well complex solutions. Additionally, instead of using the Enabled

property to prevent the modification it illustrates the use of the Locked property.
It is recommended to reuse the original simplified version as the solution will be

algorithmically similar.

Steps
1. Create the objects of type and aspect as the ones shown in Figure 10.1. We shall only give

a particular name to the ones that are going to be used for any reason in the program, both

for reading or for modifying their properties at some point in the program. In Figure 10.2

we show the names used in the proposed resolution.

2. Add the code to the events, in our case the form loading and the click on the command

buttons:

Objectives:

� To go deeply into the use of subprograms and passing parameters by reference

� To go deeply into the manipulation of strings

� Form_Load event

� Locked and MaxLength properties of text boxes
� Data formatting using Format

 Fundamentals of Computer Science 2010-2011 Lab 10

 2 / 8

Figure 10.2 Name of the objects in the equation calculator.

• Code for the form load: to specify the code to be executed when the form is loaded

we double click on the form during the design. In our particular program what we

need to do is to block all the text boxes for the solution (once for ever) using the

Locked property (note that in Lab 3 we used the property Enabled which has the

True-False logic inverted). We shall also set all the objects associated with the

solution to invisible (they will be made visible when appropriate):

Sub Form_Load()
 Call setSolutionInvisible
 txtSol1. Locked = True
 txtSol2. Locked = True
 txtIma1. Locked = True
 txtIma2. Locked = True
End Sub

It can be observed that at the beginning of this procedure we have put a call to the

setSolutionInvisible procedure, which is a subprogram that we shall write just

after this. In this subprogram we specify one by one that the objects related with the

solution (lblSol1, lblSol2, txtSol1, txtSol2, lblMas1, lablMas2, txtIma1,

txtIma2, lblIma1 y lblIma2) are going to be invisible, that is, their Visible will be

set to False. After, depending on the type of solution, we shall make visible some of

them and we shall even change the labels as necessary.

The skeleton for this procedure follows (it needs completion):

Sub setSolutionInvisible()
...

End Sub

• Code for Calculate button: we control the validity of the coefficients (they must be

numeric) and we call the CalEquation procedure which has the header shown in

Figure 10.3.

Figure 10.3 Header of the CalEquation procedure.

The input parameters are the a, b and c coefficients of the equation.

CalEquation a,b,c: real x1, x2, i1, i2: real
solTyp: integer

 Fundamentals of Computer Science 2010-2011 Lab 10

 3 / 8

The solTyp output parameter determines the type of equation among the possible

ones shown in Table 10.1.

solTyp Description

1 Real equation of 2
nd
 degree

2 Complex equation of 2
nd
 degree

3 1
st
 degree equation

4 Not an equation

Table 10.1 Equation types.

Although in Lab 3 we didn’t take into account the complex solutions now we are

going to do it.

The rest of the parameters contain the solution, depending on solTyp:

• When the solution is a real equation of 2
nd
 degree x1 and x2 will get these

solutions.

• When the solution is a complex equation of 2nd degree x1 and x2 will get the

real part, while i1 and i2 will get the imaginary parts.

• When the solution is a 1
st
 degree equation x1 will get the solution.

• When it is not an equation, none of the output parameters x1, x2, i1 or i2 will

get a significant value.

• To give the appropriate format to the data we shall use the VB Format function by

means of the “0.00 ” mode, which supposes converting to a string with two decimal

values. After this we shall make visible the corresponding graphical objects.

 Fundamentals of Computer Science 2010-2011 Lab 10

 4 / 8

Sub cmdCal_Click()
 Dim a As Double, b As Double, c As Double
 Dim x1 As Double, x2 As Double
 Dim i1 As Double, i2 As Double
 Dim solTyp As Integer
 ' Obtain the values of the coefficients
 If IsNumeric(txtA. Text) And _
 IsNumeric(txtB. Text) And _
 IsNumeric(txtC. Text) Then
 ' The values must be numeric
 a = CDbl(txtA. Text)
 b = CDbl (txtB. Text)
 c = CDbl (txtC. Text)
 Call CalEquation(a, b, c, x1, x2, i1, i2, solTyp)
 If solType = 1
 txtSol1. Text = Format(x1, "0.00")
 txtSol2. Text = Format(x2, "0.00")
 Call set2ndDegreeReal
 ElseIf SolType = 2
 txtSol1. Text = Format(x1, "0.00")
 txtSol2. Text = Format(x2, "0.00")
 txtIma1. Text = Format(i1, "0.00")
 txtIma2. Text = Format(i2, "0.00")
 Call set2ndDegreeImag
 ElseIf SolType = 3
 txtSol1. Text = Format(x1, "0.00")
 Call set1stDegree
 ElseIf SolType = = 4
 MsgBox "Error: Not an equation"
 Else
 MsgBox "Program error: incorrect equation type"
 End If
 Else
 MsgBox "Error: non-numeric coefficients"
 End If
End Sub

The code associated with the set2ndDegreeReal subprogram makes visible the

objects necessary to show the 2
nd
 degree real roots and looks as follows (it needs

completion):

Sub set2ndDegreeReal()
 Call blockABC
 lblSol1. Caption = "Root 1:"
 lblSol2. Caption = "Root 2:"
 ...
End Sub

Whenever we show a solution we block the input coefficients objects so that they are

always consistent with the solutions shown. To do so we use the blockABC

subprogram with the code (to be completed):

Sub blockABC ()
 txtA. Locked = True

...
End Sub

When we are dealing with a 2
nd
 degree equation with imaginary solutions we call the

set2ndDegreeImag subprogram. We first make visible the same objects as in the

previous case by calling the set2ndDegreeReal and on top of them we make visible

the rest of objects, as follows (to be completed):

 Fundamentals of Computer Science 2010-2011 Lab 10

 5 / 8

Sub set2ndDegreeImag ()

 Call set2ndDegreeReal

 lblMas1. Visible = True
...

End Sub

Finally, when the a coefficient is null we will have a lineal solution, with only one

root. We add a subprogram to make visible only one solution. With this we finish the

code associated with the cmdCal button. The code for set1stDegree is simpler than

the previous ones:

Sub set1stDegree ()

 Call blockABC
 lblSol1. Caption = "Root:"

...
End Sub

• Code for button cmdEra: Before we have created a subprogram to erase all the

objects for the solution while loading the form, called setSolutionInvisible. On

top of this we unblock the fields for the coefficients a, b and c, setting them empty:

Sub cmdEra_Click ()

 Call setSolutionInvisible
 Call unBlockABC
End Sub

The subprogram to unblock the coefficients can be easily guessed:

Sub unBlockABC ()
 txtA. Locked = False
 txtA. Text = ""
 ...
End Sub

 Fundamentals of Computer Science 2010-2011 Lab 10

 6 / 8

Exercise 10.1: NIC letter control

Interface

Figure 10.4 Check the Spanish NIC.

The Spanish NIC (National Identifying Card) has a redundant letter to check if it has been

correctly introduced. It is obtained by calculating the rest of the division of the number by 23,

and the resulting number will be the position (starting from 0) in the string:

TRWAGMYFPDXBNJZSQVHLCKE.

This way, for a NIC 12345678 we would calculate:

• n = 12345678 Mod 23

We get 15, so we check position 16 (starting from 1) in the given string, obtaining letter Z.

For the exercise it is asked:

• Verify that 8 digits have been input

• Verify that all input characters are digits from “0” to “9”

• Verify that a letter has been introduced (lower case or upper case)

• Calculate the NIC letter

• Say if the input letter is correct (the calculated one) or incorrect

• Check someone’s Spanish NIC

We ensure that in the corresponding field no more than the required characters are introduced

(8 and 1 respectively) we set the MaxLength property of the text fields.

 Fundamentals of Computer Science 2010-2011 Lab 10

 7 / 8

Exercise 10.2: Bank account number check

Interface

Figure 10.5 Bank account number checker.

A complete bank account number is composed of 20 digits (d19 to d0) which correspond to the

concepts expressed in Table 10.2.

Bank Branch Control Account number

d19 d18 d17 d16 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 D5 d4 d3 d2 d1 d0

Table 10.1 Digits for an account number.

This way, the first four digits of an account number are the bank code, for example, “Caja

Vital”; the following four digits refer to a unique code for each branch of that bank; the two

following digits are called the “control digits” and are useful to check the correction of the

complete account number; the ten trailing digits are the account number, unique for a given

branch of a bank.

The two control digits are calculated after the other 18 digits and only one of the 100 possible

combinations (from “00” to “99”) is valid. More precisely, the first control digit (d11)

corresponds to the first eight digits (all accounts in an office share the same digit) and the second

control digit (d10) corresponds to the account number.

The calculation method for the control digits is not infallible but enables the detection of two

different consecutive digits that are exchanged. It consists of adding the digit numbers weighted

up by a coefficient and after obtaining a single digit after the resulting number. Table 10.3 shows

the weights corresponding to each digit position.

 Fundamentals of Computer Science 2010-2011 Lab 10

 8 / 8

Bank Branch Control Account number

D19 d18 d17 d16 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

4 8 5 10 9 7 3 6 - - 1 2 4 8 5 10 9 7 3 6

Table 10.3 Coefficient weights for the control digit calculation.

For control digits d11 and d10 we shall add up respectively:

• s11 = 4⋅d19 + 8⋅d18 + 5⋅d17 + 10⋅d16 + 9⋅d15 + 7⋅d14 + 3⋅d13 + 6⋅d12
• s10 = ⋅d9 + 2⋅d8 + 4⋅d7 + 8⋅d6 + 5⋅d5 + 10⋅d4 + 9⋅d3 + 7⋅d2 + 3⋅d1 + 6⋅d0

The calculation to be carried out then for d11 is:

• d11 = 11 – (s11 Mod 11)

If the result is greater than 9 we obtain:

• d11 = 11 – d11

Similarly, for d10 we obtain:

• d10 = 11 – (s10 Mod 11)

If the result is greater than 9 we also get:

• d10 = 11 – d10

Other details

We must control that all characters are digits and that all the necessary digits are input. To

ensure that we don’t exceed the limit we limit tha corresponding fields to the maximum values

(4, 4, 2 and 10 respectively) by means of the MaxLength property.

Mid (ByVal cad As String, ByVal ini As Long,
[ByVal len As Long]) As String

Substring from ini with len length

Len (ByVal str As String}) As Integer Length of str (it can also be used with other types)
Ucase (ByVal exp As String) As String
Lcase (ByVal exp As String) As String

Convert exp to Uppercase or Lowercase.

Format (ByVal num As Double,
 ByVal fmt As String) As String

Give format to num using style fmt (it may be used

with other types, for example dates)

Table 10.4 List of relevant functions in Visual Basic

