

Fundamentals of Computer Science
2010-2011

Laboratory 3
Conditional structures

Adder with check (1)

In the previous laboratory, in exercise 2.1 consisting in an adder, if we press straight on
the “Add” button or if we introduce an arbitrary alphabetic string (see Figure 3.1) we obtain a VB
error message like the one in Figure 3.2. In Figure 3.3 we show the code portion causing the
error.

Figure 3.1 Incorrect data input in our adder.

Figure 3.2 Incorrect data type – runtime error (Spanish VB version)

 Dim s As String
 Dim op1 As Integer

 s = txtOp1.Text
 op1 = CInt (s)

Figure 3.2 Offending code portion.

The reason for this error (see Figure 3.3) is that in the assignment Visual Basic is trying to
convert the contents of the s variable, a string, into an integer number (op1) and this is not
possible under these circumstances, e.g. CInt("angel").

Objetives:
 Design of flowcharts for programs with conditional sentences
 Implement VB programs with conditional sentences (If, If-Else).
 Boolean expressions.
 Properties of the controls: Visible

 Fundamentals of Computer Science 2010-2011 Lab 3

 2 / 7

Conditional instructions enable us to check if input data are adequate before continuing
with calculations. To do this we can use the Numeric (string) predicate in flowcharts within the
conditional clause. The corresponding flowchart can be seen in Figure 3.4.

Visual Basic provides a function called IsNumeric to carry out the proposed checking.
This function receives a string and returns True if the string can be converted intro a numeric
value and False otherwise.

The rest of the code will be as before. We provide the corresponding code in Figure 3.5.

Figure 3.4 Flowchart of the sum with checking.

Sub cmdSum1_Click()
 Dim op1 As Integer, op2 As Integer
 Dim res As Integer

 If IsNumeric(txtOp1.Text) And _
 IsNumeric(txtOp2.Text) Then
 op1 = CInt (txtOp1.Text)
 op2 = CInt (txtOp2.Text)
 res = op1 + op2
 txtRes.Text = CStr (res)
 Else
 MsgBox "Operands must be numeric"
 End If
End Sub

Figure 3.5 VB code for the sum with checking.

Sum1
op1, op2: integer
res: integer

Write res

op1 ← ReadInteger
op2 ← ReadInteger

Numeric (txtOp1.Text) ∧
Numeric (txtOp2.Text)

yes no

Error "Not numeric"
res ← op1 + op2

End

 Fundamentals of Computer Science 2010-2011 Lab 3

 3 / 7

Adder with check (2)

The way we have solved the problem in the previous section of our adder with check, the
user receives no information on which of the operands is incorrect.

To provide this information we need two different checks with two separate error
messages. The flowchart contemplating this possibility can be seen in Figure 3.6.

Figure 3.6 Flowchart of the sum with two checks.

Sub cmdSum2_Click()
 Dim op1 As Integer, op2 As Integer
 Dim res As Integer

 If IsNumeric(txtOp1.Text) Then
 If IsNumeric(txtOp2.Text) Then
 op1 = CInt (txtOp1.Text)
 op2 = CInt (txtOp2.Text)
 res = op1 + op2
 txtRes.Text = CStr (res)
 Else
 MsgBox ("Operand 2 is incorrect")
 End If
 Else
 MsgBox ("Operand 1 is incorrect")
 End If
End Sub

Figure 3.7 VB code for the sum with two checks.

Sum2 op1, op2: integer
res: integer

Write res

sí

no

Error "Not numeric 1"

res ← op1 + op2

End

Numeric
(txtOp2.Text)

Numeric
(txtOp1.Text)

sí

no

Error "Not numeric 2"

op1 ← ReadInteger
op2 ← ReadInteger

 Fundamentals of Computer Science 2010-2011 Lab 3

 4 / 7

Adder with check (3)

For our two previous sections we have utilized a reading model based on text boxes. To
carry out a similar checking using an InputBox model we need to read the numbers into string
variables, carry out the checking on these and if they have adequate numeric values obtain these
on integer variables. The flowchart of this model can be seen in Figure 3.8.

Figure 3.8 Flowchart of the sum with two checks using InputBox.

Sub cmdSum3_Click()
 Dim str1 As String, str2 As String
 Dim op1 As Integer, op2 As Integer
 Dim res As Integer
 str1 = InputBox ("Introduce first number")
 If IsNumeric(str1) Then
 str2 = InputBox ("Introduce second number")
 If IsNumeric(str2) Then
 op1 = CInt (str1)
 op2 = CInt (str2)
...
Figure 3.9 Portion of the adding subprogram using InputBox.

Sum3 tx1, tx2: string
op1, op2: integer
res: integer

Write res

yes

no

Error "Not numeric 1"
op1 ← ToInteger (txt1)
op2 ← ToInteger (txt2)
res ← op1 + op2

End

Numeric (tx1) yes

no

Error "Not numeric 2"

txt2 ← ReadString

Numeric (tx2)

txt1 ← ReadString

 Fundamentals of Computer Science 2010-2011 Lab 3

 5 / 7

Exercise 3.1: Calculator 2

Design the flowchart, the interface and implement the VB calculator shown in Figure
3.10.

Interface

Figure 3.10 Interface of the second calculator model.

Operation
1. This application can be used to calculate the result of the operations addition (+),

subtraction (−), multiplication (*), quotient of the integer division (/) and
remainder (%). Note that in Visual Basic the quotient of the integer division is
represented by a backslash (\) and the remainder by the Mod keyword.

2. The values introduced in the text boxes will be controlled to ensure that they are
correct (numeric) and to prevent division by zero.

3. There will be an additional control to verify that the operator is one of the given five
ones, namely: ‘+’, ‘−’, ‘*’, ‘/’ or ‘%’.

4. The text box for the results is not editable (Enabled property).

5. The command buttons will act as follows:

• Calculate button: carry out the operation.

• Erase button: remove the contents of the text boxes.

• Quit button: finish the program.

 Fundamentals of Computer Science 2010-2011 Lab 3

 6 / 7

Exercise 3.2: program to calculate areas

Design the interface and implement the VB area calculator shown in Figures 3.11, 3.12
and 3.13. There will be a single form and we will play making visible and invisible the different
controls. Note that it is not necessary to draw the flowchart. All data are real.

Interfaces

Figure 3.11 Initial window and InputBox reading an option

Figure 3.12 Visible controls for a rectangle and another InputBox.

Figure 3.13 More interfaces of the area calculator.

 Fundamentals of Computer Science 2010-2011 Lab 3

 7 / 7

Operation
1. This application can be used to calculate the area of a rectangle, a circle or a triangle.

In each of the cases it will ask for the necessary data, hiding those objects that are not
necessary for the given figure (setting to False the Visible property) and modifying
the labels (Caption property) when necessary. The text box for the results is not
editable (Enabled property set to False).

Note: as in previous exercise you must control that the values introduced in the text boxes
are correct (i.e. numeric).

2. The buttons in the program behave as follows:

• “Select element” button: launch a message box (MsgBox) with a list of figures to
calculate the area. To cut lines you can use the constant vbCrLf as an end of line.
Verify that the read option is valid (1, 2 or 3). Visualize the pertinent labels hiding
those objects that are not adequate.

• “Calculate” button: carry out the operation.

• “Quit” button: Terminate the execution of the program.

